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I gave this 45-minute talk to the University College London Undergraduate Maths Col-
loquium (http://ucl.sneffel.com) in February 2011, using slides and some practical
demonstration by means of a keyboard and bad singing. These are the notes I compiled to
make the slides and so go into considerably more detail than I did in the talk, particularly
in the first and second halves.

0 References

I owe a lot of this talk to the work of Thomas M. Fiore at the University of Michigan.
This talk then, is a distillation of the following (excellent) material:

• Fiore, Music and Mathematics
http://www-personal.umd.umich.edu/~tmfiore/1/musictotal.pdf

• Fiore et al., Musical Actions of Dihedral Groups
http://www-personal.umd.umich.edu/~tmfiore/1/CransFioreSatyendra.pdf

• D. Benson, Music: a Mathematical Offering
http://www.maths.abdn.ac.uk/~bensondj/html/music.pdf

1 Introduction to music theory

Music theory is a big field within mathematics and lots of different people have taken it
in different directions. This is good news for us, because it means I can show you some
of these directions, hopefully at least one of which, you will find interesting.

I’ll start by re-introducing sound in a very brief mathematical way that I’m sure the
physicists will have seen before, but it’s worth reminding ourselves of where it comes
from. From there, we’ll have a wave equation and we’ll take a look at which properties
of this equation give us different outcomes. (I didn’t go very deeply into this in the talk,
in order to leave room for what I think is the more interesting stuff to come.)
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Then we’ll take a different direction entirely, looking at how we can bring in some group
theory by modelling our familiar music scale to the cyclic group of order 12. We’ll have
a look at some initially simple actions on groups which correspond to both classical and
popular music.

I chose this topic because I knew fairly little about it and thought it might be something
that we can all follow without too much difficulty. It brings together applied and pure
mathematics in a fairly satisfying way.

I hasten to add that music theory won’t allow you to plug in loads of na-na-na’s and
get Hey Jude out of it. Music is primarily a creative pursuit but mathematicians are
pattern-spotters and there are plenty of patterns for us to spot here, so let’s get on with
it.

2 A little physics

2.1 Introduction

Sound ‘happens’ when air vibrates. You’re familiar with the idea that air is loads of
molecules whizzing around at about 1000mph bumping into each other. This bumping
happens a lot (about 10 billion times a second) and this combined effect is air pressure.
When an object vibrates, then, it causes waves of increased and decreased pressure in
the air. The ear picks these up through some clever biology (which I won’t explain since
we’re interested more in the mathematics) and interprets it as sound.

Sounds waves travel as longitudinal waves, that is to say they travel in the same direction
as they propagate.

We should get rid of the idea of vibrations having single frequencies: on the whole they
consist of more than one frequency and so defining one is difficult. Furthermore, it’s
possible to interpret sound at a pitch which isn’t possible in the waveform at all, instead
being the combination of two or more. There’s a whole branch here called psychoacoustics
which deals with this kinda thing. But, having said that, initially we’ll use the one-
freqency theory.

2.2 Why sine waves?

You’re probably familiar with the notion of sound being a bunch of sine waves, but why
is this the case? If you’ll allow me to indulge in a little A-level physics, I shall remind
you:

Consider a (light) vibrating string, anchored at both ends. Placing a heavy bead of
mass m in the middle, the string exerts a force F on the bead back towards the equilib-
rium position with a magnitude (for small displacements, anyway) proportional to the
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perpendicular distance away from the equilibrium position, x:

F = −kx

Since we also have Newton’s second law,

F = ma = m
d2x

dt2

We get
d2x

dt2
+
k

m
x = 0

If you don’t mind me renaming k
m

as ω2, then we have

d2x

dt2
+ ω2x = 0

which has solution
x = A cosωt+B sinωt

which we can also write (if you remember those trig identities from A-level maths) as

x = C sin(ωt+ φ).

This is the reason that sine waves, and not any other sort of periodically oscillating wave,
is the basis for our analysis of harmonics. It governs the sound being produced, and the
movement of any point on what’s called the basilar membrane in the ear, the bit which
governs our perception of sound.

We call C the peak amplitude, ω
2π

the frequency, and φ the phase.

2.3 Harmonics

More vibrational modes are possible than just one. In fact, the middle can stay stationary
while the two halves vibrate with opposite phases. In guitars, this is what happens when
we hold down half the string. The sound produced is exactly twice the frequency, or a
whole octave higher. More on that later but what we get mathematically is

x = A cos 2ωt+B sin 2ωt.

If we hold the string a third of the way along we get

x = Ã cos 3ωt+ B̃ sin 3ωt

which is equivalent to a whole octave and a perfect fifth.

Where our university mathematics starts to come in to play is what happens in the
general case. Plucked strings normally vibrate with a mixture of all the modes described
by multiples of the natural frequency with various amplitudes. All this depends on how
the string is made to vibrate (are we plucking a string or throwing a guitar off a cliff?).
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It is not difficult to see that the general equation, then, of a typical point on the string is

x =
∞∑
n=1

(An cos(nωt) +Bn sin(nωt)) .

This should send Fourier alarm bells ringing, which is good because that is what we can
use to analyse these waves. However, I didn’t deal with this in my talk for lack of time
(plus I might want to do more on in next year).

When a note on a stringed or wind instrument sounds at a certain pitch, say with fre-
quency ν, sound is essentially periodic with that frequency. Fourier series then tells us
that such a sound can be decomposed into the sum of sine waves with various phases, at
integer multiples of the frequency ν.

Frequency ν gives us the fundamental, and frequencies mν give us the mth harmonic.
Why do notes an octave apart sound good, but notes slightly less make a horrible noise?
We’ve seen already that an interval of one octave means doubling the frequency of vi-
bration: the standard example is the A above middle C being 440 Hz, so the A below
middle C is therefore 220 Hz.

When we play one of these notes, not only these frequencies come out but also the
multiples of this frequency, so for the two A’s we get (in Hertz):

440, 880, 1320, 1760, ...

220, 440, 660, 880, ...

But if we play notes of frequencies 220 Hz and 445 Hz, we get (in Hertz):

445, 890, 1335, 1780, ...

220, 440, 660, 880, ...

(these are called partials)

The presence of the 440/445 Hz and the 880/890 Hz etc. gives that unpleasant sensation.

On the other hand though, the niceness (music theorists call this extreme consonance)
of two notes an octave apart means we perceive the two notes as being ‘the same’, but
higher. Such has it been for ever, and it is engrained into our music. This will lead us
shortly into looking at scales and then applying some (simple) group theory.

3 Scales

The perfect fifth (C–G) comes from the ratio 3
2
. The third partial of the lower note

coincides with the second parial of the upper note, which gives us a pleasant sound.
The Pythagoreans discovered this in the 6th Century BC, by plucking strings of small
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integer lengths: in fact, this was the first known example of a law of nature ruled by the
arithmetic of integers, something which greatly influenced the Pythagoreans.

They concluded that a convincing set of notes could be made just by using the ratio 3
2
,

and then by repeated use of the ratio 2
1

if we need to change the octave of the note. If
we take C as the ratio 1

1
, and continue to multiply (and divide) by 3

2
, we get(

3
2

)−5 (
3
2

)−4 (
3
2

)−3 (
3
2

)−2 (
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2

)−1 (
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2
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D[ A[ E[ B[ F C G D A E B F]

Does this go round in a circle? Unfortunately not for the Pythagoreans, although it is
very close.

1.404 . . . =

(
3

2

)−6
×
(

2

1

)4

≈
(

3

2

)6

×
(

2

1

)−3
= 1.423 . . .

where we’re multiplying by powers of 2
1

(which remember doesn’t change the note, only
the octave) to bring it down so that all our notes have frequency between 1 and 2.

So the Pythagoreans would have seen musical intervals as continued subtraction, later
forming the basis of Euclid’s algorithm for finding the highest common factor of two
integers.

4 Pitch as a group

We now look at our current model of pitch, which we can translate into the integers
modulo 12 (we’ll use the notation Z12), in order to get some cool properties out of it.
We’ll use this conversion:

C C] D E[ E F F] G A[ A B[ B
0 1 2 3 4 5 6 7 8 9 10 11

This translation also has the convenient property of being understood worldwide—different
countries have different naming conventions for the notes. As an example, let’s see what
that makes music look like. ‘Twinkle, twinkle, little star’ goes from

(C,C,G,G,A,A,G; F,F,E,E,D,D,C)

to
(0, 0, 7, 7, 9, 9, 7; 5, 5, 4, 4, 2, 2, 0)

So let us define a few simple but useful functions which we can perform:

Transposition: Let Tn : Z12 → Z12 be such that Tn(x) = x+ n mod 12.

Inversion: Let In : Z12 → Z12 be such that In(x) = −x+ n mod 12.

Music theorists like to transpose and invert segments of music by applying these functions
to each element in the set. Sometimes it works, sometimes it doesn’t.
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So transposing ‘Twinkle, Twinkle’ by n = 7 (the operation T7) gives us

(7, 7, 2, 2, 4, 4, 2; 0, 0, 11, 11, 9, 9, 7)

or
(G,G,D,D,E,E,D; C,C,B,B,A,A,G)

which sounds like ‘Twinkle, Twinkle’, but just higher. This is a key change, in fact T7 is
a key change of a perfect fifth.

But inverting it about n = 0 (the operation I0) gives us

(0, 0, 5, 5, 3, 3, 5; 7, 7, 8, 8, 10, 10, 0)

or
(C,C,F,F,E[,E[F; G,G,G],G],B[,B[,C)

which sounds awfully strange.

5 The T/I group

Having looked at some examples of transpositions and inversion, we take a look at how
they interact with each other. The collection of transpositions and inversions end up
forming a mathematical group, and we call it the T/I group.

Quickly recall that a group G is a set G and a function ∗ : G×G→ G s.t.

1. ∀a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c)

2. ∃e ∈ G s.t. a ∗ e = a = e ∗ a∀a ∈ G

3. ∀a ∈ G ∃a−1 s.t. a ∗ a−1 = e = a−1 ∗ a

And let me (somewhat cavalierly) define a chord as a set of three notes (x, y, z). As a
friend of mine pointed out, there are many forms of chord: this is specifically a triad.

T and I act component-wise, that is to say

T (x, y, z) = (T (x), T (y), T (z)) I(x, y, z) = (I(x), I(y), I(z))

We say major chords are of the form

(x, x+ 4, x+ 7) = (x, x− 8, x− 5)

and minor chords are of the form

(x, x+ 8, x+ 5) = (x, x− 4, x− 7)

where x is called the root note. So if you invert a major chord

I0(x, x+ 4, x+ 7) = (−x,−x− 4,−x− 7)

6



we get a minor chord with root note −x, and vice versa.

The C-major chord is (C,E,G) or (0, 4, 7) using our notation. Let S be the set of trans-
posed and inverted forms of the C-major chord (0, 4, 7):

Prime forms:

C D[ D E[ E F
(0,4,7) (1,5,8) (2,6,9) (3,7,10) (4,8,11) (5,9,0)

F] G A[ A B[ B
(6,10,1) (7,11,2) (8,0,3) (9,1,4) (10,2,5) (11,3,6)

Inverted forms:

Fm F]m Gm G]m Am B[m
(0,8,5) (1,9,6) (2,10,7) (3,11,8) (4,0,9) (5,1,10)

Bm Cm C]m Dm D]m Em
(6,2,11) (7,3,0) (8,4,1) (9,5,2) (10,6,3) (11,7,4)

where we’ve used the convention that ‘m’ signifies ‘minor’ (not a convention undertaken
by music theorists, who use little letters instead, but one that matches what you’ll find
online when looking up guitar tabs). This is the set of the 24 minor and major chords.

Now, let G be the group of the 24 functions Tn : S → S and In : S → S where
n = 0, 1, 2, . . . , 11. Let the operation be function composition, ◦.

Note that
Tm ◦ Tn = Tm+n;

Tm ◦ In = Im+n;

Im ◦ Tn = Im−n;

Im ◦ In = Tm−n.

where n,m are mod 12.

Note that the result of composing transpositions and inversions is itself a transposition
or inversion, so we can be convinced that ◦ really is an operation on G. We call this
group the T/I group.

This group is really important because it allows us to see things in music that we otherwise
wouldn’t be able to see!

6 The PLR group

The set of functions who input and output chords are the PLR group, dating back to a
chap called Riemann (but not that Riemann) in the late 19th Century. So this type of
theory is called Neo-Riemannian theory.

6.1 Some more functions

Let me introduce three functions:
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• Let
P (x, y, z) = Ix+z(x, y, z)

e.g. P (0, 4, 7) = (7, 3, 0)

which takes C to Cm.

• Let
L(x, y, z) = Iy+z(x, y, z)

e.g. L(0, 4, 7) = (11, 7, 4)

which takes C to Em.

• Let
R(x, y, z) = Ix+y(x, y, z)

e.g. R(0, 4, 7) = (4, 0, 9)

which takes C to Am.

6.2 Plotting the chords

If we write down C-major in the centre of the page, and draw these three functions and
their results as a graph, we get the following:

And if we keep doing this with each chord in turn, we get this big network:
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but notice that the top and bottom, and left and right, meet up. This means that
we can join these bits of the network up, and what 3D shape is this equivalent to?
Mathematicians may call it S1×S1 (pronounced torus), which looks like a doughnut with
a hole in it. Cool, huh?

6.3 Musical interpretation

Note musically this means:

• P takes a chord and maps it to its parallel major or minor

• L is a leading tone exchange, for more theoretical reasons

• R takes a chord to its relative major or minor, e.g. it takes C to Am and Am to C.

6.4 Definition of the group

We shall now define the PLR group as follows:

• The set of all possible compositions of P ,L and R.

• With operation function composition ◦.

What is |G|? Actually only 24, since we get things like L ◦ L(x) = x = R ◦R(x).
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7 Examples

7.1 50’s progression (I-vi-IV-V)

In C major: C, Am, F, G (sometimes G7)

© R−→© L−→© R◦L◦R◦L−→ © L◦R−→©

This is a classic chord sequence, whicih you can hear in many old songs, including Earth
Angel, Stand By Me, Wonderful World (Sam Cooke), Grease, Nothing’s Gonna Stop Us
Now. What does this look like on the graph?

It’s very stable—it oscillates along this small section of the network.

7.2 Pachelbel

In D major: D, A, Bm, F]m

© R◦L−→© R◦L◦R−→ © L◦R−→© L−→©

Pachelbel’s famous Canon in D (I’m sure you’ve heard it, it’s all over YouTube) uses this
chord sequence over and over again in the bass line. There’s a brilliant comedy routine
about it by Rob Paravonian which you can see at http://www.youtube.com/watch?v=

JdxkVQy7QLM. This tracks the same stable section of the network as the 50’s progression
if we plot it.
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7.3 Beethoven’s Ninth Symphony

This is a classic example and we’ll single out bars 143–176. Check out the sequence of
19 chords in the bass line.

They are

C,Am,F,Dm,B[,Gm,E[,Cm,A[,Fm,D[,B[m,G[,E[m,B,G]m,E,C]m,A

Notice that the whole sequence can be obtained by applying to C the functions R and L
in turn!

C
R→ Am

L→ F . . .

If we keep going, we hit every single chord. Here’s what it looks like if we plot it, where
the yellow sections are the bits we’ve added in by continuing the sequence.

So the path that this traces out on our graph hits every single chord along the torus.
Movement in music can be likened very much to movement along the surface of the torus.
In fact this graph’s automorphism group is D24, something we’ll look at now.

8 D24

Now, we’re going to show that there’s an isomorphism between the PLR group and the
dihedral group of order 24, D24.
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Recall from the Groups and Rings course that D24 is the group generated by two elements,
s and t such that

s12 = 1 t2 = 1 tst = s−1

So we can think of it as the group of symmetries of a 2-sided dodecagon. Time for some
traditional-style maths.

Theorem: The PLR group is generated by L and R and has at least 24 elements.

Proof: First notice that by the definitions of P , L and R,

PT1 = T1P LT1 = T1L RT1 = T1R

Now, if we begin with the C major triad and alternately apply R and L, we get the
following sequence, which is the complete list from the Beethoven example:

C,Am,F,Dm,B[,Gm,E[,Cm,A[,Fm,D[,B[m,

G[,E[m,Bm,G]m,E,C]m,A,F],D,Bm,G,Em,C

which tells us the 24 bijections

R,LR,RLR, . . . , R(LR)11, (LR)12 = 1

are distinct and that the PLR group has at least 24 elements, and that LR has order 12.

Furthermore, note that
R(LR)3(C) = Cm

and since R(LR)3 has order 2 and commutes with T1, R(LR)3 = P and so the PLR
group is generated by L and R alone.

So now, let’s call s = LR, t = L, then s12 = 1, t2 = 1 and

tst = L(LR)L = RL = s−1

as required.

All which remains is to show that the PLR group has order 24. But first, let me give
you an interesting result:

9 T/I and PLR are dual

Let me remind you of the definition of a symmetric group:

Definition: The symmetric group Sym(S) of a set S is the group consisting of all
bijections of the set from the set to itself, under function composition.

So we can consider the T/I and PLR groups as subgroups of Sym(S)

T/I, PLR ⊂ Sym(S)
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Then something quite cool happens. The centre of the T/I group is the PLR group, and
vice-versa!

Recall the definition of the centre of a group from Groups and Rings Exercises 7A:

Definition: The centre Z(G) of a group G is the fixed point set under the action of G
on itself by conjugation

Z(G) = x ∈ G : ∀g ∈ G, gxg−1 = x

So in this sense, we can call the T/I and PLR groups dual. In fact, we can illustrate this
property. If we apply T1 to the C major triad, and then L, this is the same as applying
L and then T1:

S
T1−→ S

L ↓ ↓ L

S
−→
T1 S

i.e. the diagram commutes. In fact we can see the P , L, and R all commute with T1 and
I0. And since these are the generators of the groups, any diagram with vertical arrows
in the PLR group and horizontal arrows in the T/I group will commute.

Bringing back a previous example to show you what this looks like:

• Pachelbel’s Canon in D (chord sequence D–A–Bm–F]m)

D
T7−→ A

R ↓ ↓ R

Bm
−→
T7 F]m

Now to prove it properly!:

Theorem: The PLR and T/I groups are the centres of each other in Sym(S). Further-
more, they are isomorphic to D24.

Proof: We have determined that any element of the PLR group commutes with an
element of the T/I group, i.e. PLR ⊂ Z(T/I).

∀y ∈ S, claim the fixed point set of y under the action of Z(T/I) contains only the
identity element. Suppose h ∈ Z(T/I) and fixes y, and that g is in the T/I group, then
we have:

hy = y

ghy = gy

hgy = gy

So since the T/I group acts transitively, every y′ ∈ S is of the form gy for some g in the
T/I group, therefore h is the identity function on S. Hence the fixed point set of y in
Z(T/I) is the trivial group.
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Now recall the theorem from Groups and Rings to do with the Class Equation when we
said

|〈x〉| = |G|
|Gx|

i.e. the size of the orbit of x is the size of the group G divided by the size of the fixed
point set Gx.

Apply this to G = Z(T/I) to give us

|Z(T/I)|
|Z(T/I)y|

= |〈y〉| ≤ |S| = 24

As PLR ⊂ Z(T/I) and |Z(T/I)| = 1, we conclude

|PLR-group| ≤ |Z(T/I)| ≤ 24

From the bit earlier when we listened to Beethoven’s Ninth Symphony, we know the PLR
group has at least 24 elements. Hence (in the same method as Archimedes), we know the
PLR group has exactly 24 elements and is equal to Z(T/I).

To show the other way round, just switch the roles of the T/I and PLR groups.

Hence PLR ∼= T/I ∼= D24.

This last part was mentioned as a cool result in the talk, although time (and interest,
really) meant I couldn’t go through this as rigorously as I have here.

If you’re looking for more on this subject, then I heartily recommending reading the
references at the top of this document. If you notice any mistakes (thanks, Reddit!) or
wish to contact me, you can at adam@adamtownsend.com.
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