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Chapter 1

Introduction

Chocolate fountains are a popular feature at special events. Melted chocolate is
pumped over a series of domes and falls freely between them. In this project we
model different fluid types over one such dome, and investigate how the fluid behaves
in the different regions of the fountain: as it comes up the pipe (chapter 2), as it
falls down the dome (chapter 3), how it leaves the dome, and how it falls freely
(chapter 4). When fluid leaves the dome, it is observed that the fluid falls inwards
rather than straight down and we offer an explanation and model for this.

Standard table chocolate fountains, such as in Figure 1.1, have two tiers and a
small pool at the top for chocolate to gather before it travels down the edge and
travels down the first dome. Chocolate is carried from the pool at the bottom of
the fountain to the top by use of an Archimedes screw, but the existence of the
pool at the top serves to remove all rotation in the fluid by the time it falls off.
For this reason, and because axisymmetric pipe flows with pressure gradients are a
nice introduction to the fluid models we will be discussing, we model the pipe as
a vertical axisymmetric pipe with a constant pressure gradient. We then continue
our mathematical considerations on the dome as the fluid approaches from the top.
This model is shown in Figure 1.2.

Experimentally it was observed that in our fountain, the temperature of the chocol-
ate remains constant (at 40 ◦C to within one degree) throughout its journey in the
fountain so long as the fountain has been running for long enough (about thirty
minutes). Wollny (2005) states that to within one degree, viscosity of chocolate
should fluctuate between 5% and 10%. The much greater influence on viscosity is
shear stress, which we consider in following chapters.

1.1 Modelling chocolate

When we consider different fluid models, what we are considering is the relationship
(called the constitutive relation) between the stress and velocity gradient tensors
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MATHM901 The fluid dynamics of chocolate fountains

Figure 1.1: The chocolate fountain we are modelling in action.

Figure 1.2: We model the chocolate fountain as a hemisphere atop a vertical cylindrical
pipe, capturing the essence of the problem.
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Chapter 1. Introduction

within the fluid. Formally, for a stress tensor σ and velocity vector u,

σ = F (∇u,∇u|t<t0 , . . .) ,

where F is a functional which can take a multitude of arguments, possibly including:
velocity gradient, temperature, electric fields, time, the scalar shear rate γ̇ (defined
below), and historical (t < t0) values of all these quantities.

The shear rate tensor, γ̇, is defined as

γ̇ = ∇u+∇uT

and its scalar counterpart, γ̇, is defined as

γ̇ =

(
1

2
∇u : ∇u

)1/2

=

(
γ̇abγ̇ab
2

)1/2

, (1.1)

where γ̇ij is the ijth component of γ̇.

In a generalised Newtonian fluid, the functional F is a function µ of γ̇ alone, and
represents the viscosity,

σ = µ(γ̇)γ̇,

and component-wise,
σij = µ(γ̇)γ̇ij,

where σij is the ijth component of σ. It is from this family of models that we
shall choose to model chocolate in our chocolate fountain, since the temperature
throughout the chocolate’s path in the fountain does not change enough to warrant
complicating the model.

In a simple shear flow in a channel of height y and where the top of the channel
is moving with speed u, as in Figure 1.3, the shear rate tensor is simply the scalar
value

γ̇ = γ̇ =
∂u

∂y

and hence for a generalised Newtonian fluid,

σ = µ(γ̇)γ̇ = f(γ̇),

for some ‘combined’ function f . It is customary to introduce fluid models in this
simple shear flow first, so this is how we shall proceed.

The simplest fluid model we shall be using is the Newtonian model, where there
is proportionality between stress and strain rate,

σ = µγ̇,

and our viscosity µ is a constant. We shall be using a representative viscosity of
chocolate at the sort of shear rates we are expecting (about 10 s−1) of 14Pa s. The
viscosity of honey is 10Pa s so this is a sensible value.
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Figure 1.3: Shear flow in a 2D channel of height y with a fixed base and a stress
applied to the top, causing the top to move at a speed u.

In Casson (1959), N. Casson provides a model, originally designed for printing ink,
which gives a constitutive equation of

√
σ =

{ √
µcγ̇ +

√
σy if σ ≥ σy√

σy if σ ≤ σy
(1.2)

where µc is the Casson plastic viscosity, and σy is the yield stress, given in pipe flow
by

σy =
rcσw
a

(1.3)

where rc is the critical radial value (the value for which we expect plug flow), σw is
the stress upon the pipe wall, and a is the radius of the pipe.

Typical values for chocolate, from industrial experiments (Mongia and Ziegler, 2000),
are given in Table 2.1, where we explore this model more. This model, Casson’s

model, was recommended by the International Confectionery Association to model
chocolate from 1973 until 2000, when Aeschlimann and Beckett (2000) found that
at low shear rates, Casson’s model does not fit the experimental rheology data
well. As such it was difficult to find repeatability, and so interpolation data was
recommended instead. (Sahin and Sumnu, 2006; Afoakwa et al., 2009).

Such interpolation data typically takes the form of a power-law model, where

σ = kγ̇n.

In component form, which we will use both in the pipe and on the dome in the
following chapters, this is equivalent to

σij = kγ̇n−1γ̇ij (1.4)

where γ̇ is that scalar shear rate defined in equation (1.1). Typical values for
chocolate at 40 ◦C are, from industrial experiment (Radosasvljevic et al., 2000),
k = 65 and n = 0.3409. Fluids with n < 1, as our chocolate is, are called shear-
thinning, and include ceiling paint and tomato ketchup∗ among them. Fluids with
n > 1 are called shear-thickening, of which a paste of cornflour and water is the best
known. Of course, when n = 1, this model is equivalent to the Newtonian model.
These relations are shown in Figure 1.4.

∗Ketchup is actually a more special type of shear-thinning fluid, a Bingham fluid.
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Chapter 1. Introduction

Figure 1.4: Graph of stress against rate of strain for a typical shear-thickening
(dark red), Newtonian (orange), shear-thinning (blue) and Bingham fluid
(green).

1.2 Typical values

At points in this project, we use experimental data to argue relative size of terms, or
to compare expected result with what we observe in the chocolate fountain. Table
1.1 lists the typical values found from experiment, and relevant sources.

∗Source: Radosasvljevic et al. (2000)
§Source: Keijbets et al. (2009). Experiments done with dark chocolate (50% cocoa), but this

number is representative.
‡Source: Wichchukit et al. (2005). Experiments done with milk chocolate at 42 ◦C.
¶Source: Daubert et al. (1997). Experiments done with milk chocolate over a temperature

range 25–60 ◦C.
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Pipe radius a 0.02 m
Dome radius R 0.07 m

Density of chocolate‡ ρ 1270 kgm−3

Surface tension of chocolate§ γs 0.0226 Nm−1

Thermal diffusivity¶ c 6.32× 10−8 m2 s−1

Characteristic dome film thickness H 0.001 m
Characteristic dome velocity U 0.1 m s−1

Typical dome leaving velocity u0 0.1 m s−1

Characteristic sheet film thickness H 0.0015 m
Gravitational acceleration g 10 m s−2

Drop height ℓ 0.07 m
Newtonian apparent viscosity µ 14 Pa s

Power-law flow consistency index∗ k 64.728 Pa sn

Power-law flow behaviour index∗ n 0.3409

Table 1.1: Table of values found experimentally

10



Chapter 2

The pipe

In a chocolate fountain, chocolate is heated at the bottom and is then transported
to the top using an Archimedes spiral (and it is the rotating of the spiral which
creates the noise associated with running it). Such spirals are difficult to model
and since the rotation of the fluid makes observably minimal difference at the top
of the fountain, we model the spiral as a vertical pipe with a constant pressure
gradient. This choice of model also allows us to introduce relevant non-Newtonian
fluid models within a geometry that is familiar and well-researched.

The radius of the pipe is a, and we will use cylindrical coordinates (r, θ, z) although
the axisymmetric nature of the problem will lead us to expect no motion in the θ
direction.

2.1 Newtonian, isothermal model

In our first model we model the chocolate as a viscous, incompressible Newtonian
fluid, with constitutive equation

σ = µγ̇

where µ is constant.

The Navier–Stokes equation for a viscous, incompressible Newtonian fluid is

ρ
Du

Dt
= −∇p+ µ∇2u+ F (2.1)

where u is the velocity of the fluid, D
Dt

= ∂
∂t
+ u · ∇ is the material derivative, ρ is

the density of the fluid (assumed constant), µ is the viscosity of the fluid and F are
external body forces (per unit volume).

Incompressibility gives us the continuity equation:

∇ · u = 0.
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In axisymmetric cylindrical polar coordinates, where the only external body force
acting is gravity (downwards), these two equations are equivalent to the following
system:

ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

)
= −∂p

∂r
+ µ

[
1

r

∂

∂r

(
r
∂ur
∂r

)
+
∂2ur
∂z2

− ur
r2

]
(2.2)

ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

)
= −∂p

∂z
+ µ

[
1

r

∂

∂r

(
r
∂uz
∂r

)
+
∂2uz
∂z2

]
− ρg (2.3)

1

r

∂

∂r
(rur) +

∂uz
∂z

= 0. (2.4)

We expect steady flow, so we can say that

∂ur
∂t

=
∂uz
∂t

= 0.

Furthermore by symmetry we only expect flow in the z-direction, so we set

ur = 0 and uz = u(r).

The three equations above then reduce to:

0 = −∂p
∂r

(2.5)

0 = −∂p
∂z

+ µ

[
1

r

∂

∂r

(
r
∂u

∂r

)]
− ρg (2.6)

0 = 0. (2.7)

Equation (2.5) tells us that p = p(z, t) and equation (2.6) is the only thing left to
solve.

We are assuming a constant pressure gradient

∂p

∂z
= G = const.

with the boundary conditions

u(a) = 0 no-slip condition (2.8)

∂u

∂r
(0) = 0 by symmetry (2.9)

If we let
H = −(G+ ρg),

the total pressure gradient including hydrostatic pressure, then equation (2.6) can
be written

−H =
µ

r

∂

∂r

(
r
∂u

∂r

)

12



Chapter 2. The pipe

-0.02 -0.01 0.01 0.02

-0.10

-0.08

-0.06

-0.04

-0.02

Figure 2.1: Velocity profile of a Newtonian fluid, given by (2.10). The pressure gradi-
ent G is set to zero, hence we get downwards flow in the pipe. Constants
are from Table 1.1

Rearranging and integrating once with respect to r,

−r2H
2µ

+ C = r
∂u

∂r
.

Rearranging and integrating with respect to r again,

−r2H
4µ

+ C ln r +D = u.

Boundary condition (2.8) tells us

D =
a2H

4µ
− C ln a

and boundary condition (2.9) gives C = 0 and so

u =
a2H

4µ
− r2H

4µ

and substituting in H gives

u = (r2 − a2)
G+ ρg

4µ
, (2.10)

our velocity profile for a Newtonian fluid in a pipe with constant pressure head
(Poiseuille flow). Note that we shouldn’t be worried that r2−a2 is mostly negative:
in the absence of a pressure gradient G, we would, of course, expect fluid to fall
down the tube, in the −z-direction. Figure 2.1 shows this velocity profile, in the
absence of a pressure gradient, which is a parabola.
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2.2 Power-law fluid

We consider a power-law fluid travelling up a vertical pipe. The Navier–Stokes
equation for a general fluid is

ρ
Du

Dt
= −∇p+∇ · σ + F (2.11)

(which reduces to (2.1) for a Newtonian fluid) where σ is the stress tensor (note
that some authors include the pressure within their definition of the stress tensor).
Expanded into cylindrical polar coordinates for an axisymmetric flow, where down-
wards gravity is the only external force, this is equivalent to

ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

)
= −∂p

∂r
−
[
1

r

∂

∂r
(rσrr)−

σθθ
r

+
∂σrz
∂z

]
(2.12)

ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

)
= −∂p

∂z
−

[
1

r

∂

∂r
(rσzr) +

∂σzz
∂z

]
− ρg (2.13)

1

r

∂

∂r
(rur) +

∂

∂z
(uz) = 0. (2.14)

Steady flow demands
∂ur
∂t

=
∂uz
∂t

= 0

and by symmetry we expect flow only in the z-direction, so we set

ur = 0 and uz = uz(r).

We now seek to find which components of stress become zero under these velocity
assumptions. For a generalised Newtonian fluid, such as the power-law model we’re
using here, if a given component of γ̇ is zero, then the respective component of σ
is too. For the power-law model, this is explicit in equation (1.4). In cylindrical
coordinates, the components of rate of strain γ̇ for an incompressible fluid are given
by

γ̇rr = 2
∂ur
∂r

γ̇θθ = 2

(
1

r

∂uθ
∂θ

+
ur
r

)

γ̇zz = 2
∂uz
∂z

γ̇rθ = γ̇θr = r
∂

∂r

(uθ
r

)
+

1

r

∂ur
∂θ

γ̇rz = γ̇zr =
∂uz
∂r

+
∂ur
∂z

(2.15)

γ̇θz = γ̇zθ =
∂uθ
∂z

+
1

r

∂uz
∂θ

.

Under the assumptions uθ = ur = 0 and uz = uz(r), the only non-zero component
of γ̇ is γ̇rz and so the only non-zero component of σ is σrz = σzr.

14



Chapter 2. The pipe

With this in mind then, equations (2.12)–(2.14) reduce to

0 = −∂p
∂r

(2.16)

0 = −∂p
∂z

+
1

r

∂

∂r
(rσzr)− ρg (2.17)

0 = 0. (2.18)

We notate the steady pressure gradient thus,

∂p

∂z
= G = const.

and for convenience we add the gravity term to form the pressure head, H,

H = −(G+ ρg).

We are then left to solve
∂

∂r
(rσzr) = Hr

which after integration with respect to r and rearranging gives

σzr =
Hr

2
. (2.19)

Note that the constant of integration is set to zero by the boundary condition that
σzr(0) = 0 by symmetry. Introducing the wall stress,

σw =
Ha

2
,

equation (2.19) is equivalent to

σzr = σw
r

a
. (2.20)

Equation (1.4) tells us
σzr = kγ̇n−1γ̇zr,

and equation (2.15) tells us

γ̇ = γ̇zr =
duz
dr

, (2.21)

where γ̇ is our scalar shear rate, given by (1.1), and equal to γ̇zr since it is the only
non-zero component of strain rate.

Substituting this into equation (2.20) gives

k

(
duz
dr

)n

= σw
r

a
,

which we can rearrange to find an expression for duz/dr,

duz
dr

=
(σw
ka

)1/n

(r)1/n

15
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Figure 2.2: Velocity profile of a (shear-thinning) power-law fluid, given by (2.22).
Constants are G = 0 (no pressure gradient, hence downward flow) and
the rest from Table 1.1

and then integrating with respect to r and noting the boundary condition uz(a) = 0,
gives

uz =
(σw
ka

)1/n r1+1/n − a1+1/n

1 + 1/n
. (2.22)

In a Newtonian liquid, k = µ and n = 1 in equation (1.4) and substituting these
values into (2.22) gives us

uz =
σw
µa

r2 − a2

2

=
H

2µ

r2 − a2

2

= (r2 − a2)
G+ ρg

4µ

which is equivalent to equation (2.10).

Note that from our experimental data, the flow is slower with the power-law model:
Figure 2.2 has been plotted with coefficients from the experimentally obtained data
in Table 1.1, with the pressure gradient G once again set to zero (hence we get
downwards flow again). Maximum speed in the Newtonian model is 0.098ms−1 and
the maximum speed in the power-law model is 0.047ms−1. The model used here
has n = 1

3
< 1: i.e. chocolate is modelled as a shear-thinning fluid. The shape of

the profile we see is somewhat similar to the parabola in the Newtonian case, but is
considerably flatter at the centre: we see slower plug flow in the centre of the pipe,
of width roughly a third of the diameter. Unlike in the Casson case which we shall
see next, however, the flatness in the centre is not totally flat, ∂uz/∂r 6= 0: there is
still some curvature.
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Chapter 2. The pipe

2.3 Casson’s model

In chapter 1, we introduced Casson’s model, which gives a constitutive equation of

√
σ =

{ √
µCγ̇ +

√
σy if σ ≥ σy√

σy if σ ≤ σy

where µC is the Casson plastic viscosity, and σy is the yield stress, given by

σy =
rcσw
a

.

Recall equation (2.20):

σzr = σw
r

a
.

This time we square root this and substitute it into Casson’s model, equation (1.2),

√
σw
r

a
=

√
µCγ̇ +

√
σy, (2.23)

for σzr > σy. Solving for γ̇zr gives

γ̇zr =

(√
σw

r
a
−√

σy
)2

µC

,

or, substituting in equation (2.21),

duz
dr

=

(√
σw

r
a
−√

σy
)2

µC

. (2.24)

We can integrate this with respect to r to find

uz = −
r
(
8a

√
σyrσw

a
− 6aσy − 3rσw

)

6aµC

+ c.

Substituting in equation (1.3) for σy,

= −8r3/2r
1/2
c σw − 6rrcσw − 3r2σw

6aµC

+ c

= − σw
2aµC

(
8

3
r3/2r1/2c − 2rrc − r2

)
+ c,

and using the no-slip boundary condition u(a) = 0 we find

uz(r) =

{
σw

2aµC

(
8
3

(
a3/2 − r3/2

)
r
1/2
c − 2(a− r)rc − (a2 − r2)

)
if rc ≤ r ≤ a

u(rc) if 0 ≤ rc < rc
.

(2.25)
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Percentage of coarse chocolate powder σy (Pa) µC (Pa s)
0 8.01 5.60
25 6.64 3.70
50 4.63 3.17
75 2.79 3.60
100 1.92 4.78

Table 2.1: Table of values found for σy and µC by Mongia and Ziegler (2000). The
different chocolate samples were formed with a combination of coarse and
fine chocolate powders, the percentages of which are given here.

-0.02 -0.01 0.01 0.02

-0.15

-0.10

-0.05

Figure 2.3: Velocity profile of a Casson fluid, given by (2.25). Constants are G = 0
(no upward pressure gradient, hence downwards flow), µC = 4.63 (from
Table 2.1), rc = 6.71× 10−4 and the rest from Table 1.1.
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-0.04

-0.03

-0.02

-0.01

Figure 2.4: Velocity profile of a Casson fluid, with the same values as Figure 2.3, but
with rc = 0.005 to emphasise the properties of this fluid model.
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Chapter 2. The pipe

Mongia and Ziegler (2000) give values for σy and µC, reproduced in Table 2.1.
Using this table, we can find an estimate for rc. If we use the value of σy for the
50% sample, G = 0 and the values from Table 1.1 then

rc =
σya

σw
=

4.63× 0.02

1380× 10× 0.02/2
= 6.71× 10−4

which is 3.4% of the radius of the pipe, so this is very small. This velocity profile has
been illustrated in Figure 2.3, and again in Figure 2.4 but with an artificially larger
critical radius of rc = 0.005 to emphasise this property of Casson’s fluid model.
With small rc, the profile looks very similar to the parabola seen in the Newtonian
case, with a slight flatness at the centre. With larger rc, it resembles much closer
the power-law profile, with the plug flow in the centre. This time, however, the
flatness seen in both large and small rc is truly flat, ∂uz/∂r = 0 in this area.

2.4 Generalised Newtonian fluid model

The procedures for finding velocity profiles in the preceding sections can be gener-
alised easily (Wilkinson, 1960).

If we have a constitutive relation

γ̇ = f(σ), (2.26)

for some function f , then for pipe flow this is equivalent to

duz
dr

= f(σzr). (2.27)

We can write the shear stress σzr in terms of the wall shear stress, σw, as

σzr = σw
r

a
.

Substituting this into (2.27) gives

duz
dr

= f
(
σw
r

a

)
,

and integrating with respect to r with the no-slip boundary condition u(a) = 0
gives us our general velocity profile,

uz(r) =

∫ a

r

f
(
σw
r

a

)
dr. (2.28)

Of course the difficulty with this calculation is where the challenges lie, particularly
since the constitutive equation represented in equation (2.26) is conventionally writ-
ten in the inverse, i.e.

σ = F (γ̇),

where F = f−1.

19



20



Chapter 3

The dome

3.1 Isothermal Newtonian and power-law models

In this section we model movement of chocolate over the dome, being released at a
constant rate from the very top of the dome. The resultant flow is described using
lubrication theory. We model the dome as the top half of a sphere, but show that the
analysis (and result) would work for any smooth shape, since the global curvature
of the dome does not affect the motion of the fluid (mirroring other thin-film flows).

We set up spherical coordinates (r, θ, φ) where θ is the inclination angle, 0 ≤ θ < π,
and φ is the azimuthal angle, 0 ≤ φ < 2π. We label the radius of the sphere R and
the film thickness h. We expect axisymmetric flow so h = h(θ). This is summarised
in Figure 3.1.

We use and compare two fluid models: the Newtonian model and the power-law
model. We do not explore Casson’s model in this geometry since the algebra would
be considerably unwieldy, and we expect little difference between the Casson and
power-law models. The differences in pipe flow between the Casson and power-law
models, as seen in Figures 2.2 and 2.4, are very small anyway, and the difference
between Newtonian and power-law flows (Figure 3.5) on the dome are in themselves
slight, so we expect very little noticable difference between the Casson and power-
law models on the dome.

For a general fluid, the Navier–Stokes equation can be written

ρ
Du

Dt
= −∇p+∇ · σ + F (2.11)

where ρ is our (constant) density, u = (ur, uθ, uφ) is our velocity vector, p is pressure,
σ is our stress tensor, F = (Fr, Fθ, Fφ) are any external body forces (per unit
volume), and D/Dt is the material derivative.

We expect a steady, axisymmetric flow, so we set uφ = 0 and ∂/∂φ = 0. The
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Figure 3.1: Coordinate setup for the dome problem

Navier–Stokes equations can then be written out in component form as

ρ

[
ur
∂ur
∂r

+
uθ
r

∂ur
∂θ

− u2θ
r

]

= −∂p
∂r

−
[
1

r2
∂

∂r

(
r2σrr

)
+

1

r sin θ

∂

∂θ
(σrθ sin θ)−

σθθ + σφφ
r

]
+ Fr (3.1)

ρ

[
ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

]

= −1

r

∂p

∂θ
−

[
1

r2
∂

∂r

(
r2σrθ

)
+

1

r sin θ

∂

∂θ
(σθθ sin θ) +

σrθ
r

− σφφ cot θ

r

]
+ Fθ

(3.2)

0 = − 1

r sin θ

∂p

∂φ
−
[
1

r2
∂

∂r

(
r2σrφ

)
+

1

r

∂σθφ
∂θ

+
σrφ
r

+
2σθφ cot θ

r

]
+ Fφ (3.3)

and our continuity equation is

0 =
1

r

∂

∂r

(
r2ur

)
+

1

sin θ

∂

∂θ
(uθ sin θ) . (3.4)

We seek the form of the σ components, and since in both models that we are using,
the stress is a direct function of the shear rate γ̇, we write out the shear components
for a general incompressible fluid, where we expect axisymmetric flow:

γ̇rr = 2

[
∂ur
∂r

]

γ̇θθ = 2

[
1

r

∂uθ
∂θ

+
ur
r

]

γ̇φφ = 2

[
ur
r

+
uθ cot θ

r

]

γ̇rθ = γ̇θr =

[
r
∂

∂r

(uθ
r

)
+

1

r

∂ur
∂θ

]
(3.5)
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γ̇rφ = γ̇φr = 0

γ̇θφ = γ̇φθ = 0

Since our fluid models in component form are

σij = µγ̇ij, σij = kγ̇n−1γ̇ij

where γ̇ =
√
γ̇abγ̇ab/2 (using Einstein summation convention), zero shear rate leads

to zero stress component-wise. Hence the φ-momentum equation (3.3) reduces to

0 = − 1

r sin θ

∂p

∂φ
+ Fφ. (3.6)

We now introduce gravity as our only external force, hence

(Fr, Fθ, Fφ) = (−ρg cos θ, ρg sin θ, 0).

This reduces our φ-momentum equation (3.6) to merely saying p = p(r, θ) (which
we could have expected) and the r- and θ-momentum equations (3.1)–(3.2) become

ρ

[
ur
∂ur
∂r

+
uθ
r

∂ur
∂θ

− u2θ
r

]

= −∂p
∂r

−
[
1

r2
∂

∂r

(
r2σrr

)
+

1

r sin θ

∂

∂θ
(σrθ sin θ)−

σθθ + σφφ
r

]
− ρg cos θ (3.7)

ρ

[
ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

]

= −1

r

∂p

∂θ
−
[
1

r2
∂

∂r

(
r2σrθ

)
+

1

r sin θ

∂

∂θ
(σθθ sin θ) +

σrθ
r

− σφφ cot θ

r

]
+ ρg cos θ.

(3.8)

Since this system is too complicated to solve analytically, we have to introduce a
scaling which will allow us to neglect comparatively small terms. We rescale our
variables in the following way

ûθ =
uθ
U
, ûr =

ur
V
, ĥ =

h

H
, r̂ =

r −R

H
, (3.9)

where hats denote scaled variables. U and V are characteristic speeds in the θ- and
r-direction respectively, H is a characteristic film thickness, and R is our already-
established sphere radius. Note that our scaling for r is unusual, but it emphasises
the physical nature of the problem: the fluid occupies the space R ≤ r ≤ R + h,
and our scaling converts this into 0 ≤ r̂ ≤ h/H, where h/H ∼ 1.

What this means for our scaling is that

uθ ∼ U, ur ∼ V, h ∼ H, r ∼ R, ∂/∂r ∼ 1/H. (3.10)

The continuity equation (3.4) tells us how these characteristic values interact with
each other. The equation is

0 =
1

r

∂

∂r

(
r2ur

)
+

1

sin θ

∂

∂θ
(uθ sin θ) .
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and so
RV

H
∼ U, (3.11)

where we have substituted our scalings for our variables. Strictly, this comes from
substituting our scaled variables (3.9) into the continuity equation, which would
read

0 =
1

Hr̂ +R

1

H

∂

∂r̂

(
(R +Hr̂)2V ur

)
+

1

sin θ

∂

∂θ
(Uuθ sin θ) ,

and reading off the order of the terms. We will use the less strict approach in
our forthcoming arguments, but strict treatment as shown here will give the same
results. The important part of the equivalence (3.11) is that

V ∼ UH

R

which is very small compared to U , since H/R is small. Of course, this result is
what we expect: flow is predominantly in the θ-direction.

We intend, then, to look at how each term in equations (3.7)–(3.8) scales, but first
we must look at how our stresses scale. Recalling that our constitutive relations in
the Newtonian and power-law case are given by

σij = µγ̇ij, σij = kγ̇n−1γ̇ij,

we look to see how our strains scale. Of course, finding this for the power-law case
immediately finds this for the Newtonian case (by substituting n = 1 and k = µ),
so we concentrate on the power-law case.

Firstly, the scalar strain γ̇ =
√
γ̇abγ̇ab/2 is given by

γ̇ =

{
1

2

[(
∂ur
∂r

)2

+

(
1

r

)2 (
∂uθ
∂θ

)2

+ 2
(ur
r

)2

+

(
uθ cot θ

r

)2

+

(
r
∂

∂r

(uθ
r

))2

+

(
1

r

)2 (
∂ur
∂θ

)2
]}1/2

.

(3.12)

Term-by-term, these terms scale as

[
V 2

H2
+
U2

R2
+
V 2

R2
+
U2

R2
+
R2

H2

U2

R2
+
U2

R2

]1/2

For the first term, V/H ∼ U/R, and clearly the scalar strain scales predominantly
as

γ̇ ∼
(
U2

H2

)1/2

=
U

H
. (3.13)
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Now we look at the non-zero strain components again and see how they predomin-
antly scale:

γ̇rr = 2

[
∂ur
∂r

]
∼ V

H
∼ U

R

γ̇θθ = 2

[
1

r

∂uθ
∂θ

+
ur
r

]
∼ U

R

γ̇φφ = 2

[
ur
r

+
uθ cot θ

r

]
∼ U

R

γ̇rθ = γ̇θr =

[
r
∂

∂r

(uθ
r

)
+

1

r

∂ur
∂θ

]
∼ U

H

Hence our non-zero stress components scale as

σrr ∼ k

(
U

H

)n−1
U

R
= k

(
U

H

)n
H

R

σθθ ∼ k

(
U

H

)n
H

R

σφφ ∼ k

(
U

H

)n
H

R

σrθ = σθr ∼ k

(
U

H

)n

.

So with this in mind we can now rewrite (3.7)–(3.8) and see how each term scales.
So, to reiterate, our governing equations are

ρ

[
ur
∂ur
∂r

+
uθ
r

∂ur
∂θ

− u2θ
r

]

= −∂p
∂r

−
[
1

r2
∂

∂r

(
r2σrr

)
+

1

r sin θ

∂

∂θ
(σrθ sin θ)−

σθθ + σφφ
r

]
− ρg cos θ (3.14)

ρ

[
ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

]

= −1

r

∂p

∂θ
−

[
1

r2
∂

∂r

(
r2σrθ

)
+

1

r sin θ

∂

∂θ
(σθθ sin θ) +

σrθ
r

− σφφ cot θ

r

]
+ ρg cos θ.

(3.15)

and these scale, term-by-term, as

ρ

[
UV

R
+
UV

R
− U2

R

]
= (?)−

[
k

R

(
U

H

)n

+
k

R

(
U

H

)n

− Hk

R2

(
U

H

)n

+
Hk

R2

(
U

H

)n]
+ (?)

ρ

[
U2

R
+
U2

R

]
= (?)−

[
k

H

(
U

H

)n

+
Hk

R2

(
U

H

)n

+
k

R

(
U

H

)n

− Hk

R2

(
U

H

)n]
+ (?),

where we have marked by (?) those terms which we don’t know the size of. Dividing
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through by ρU2/R gives a non-dimensional scaling,

V

U
+
V

U
− 1 = (?)− 1

Re

[
R

H
+
R

H
− 1 + 1

]
+ (?) (3.16)

1 + 1 = (?)− 1

Re

[(
R

H

)2

+ 1 +
R

H
− 1

]
+ (?), (3.17)

where the Reynolds number Re is given by

Re =
ρUR

µ
=
ρURHn−1

kUn−1
=
ρU2R

Hk

(
H

U

)n

,

since µ = kγ̇n−1 for a power-law fluid. Using the values from Table 1.1, we find for
the Newtonian data, Re = 0.635, and for the power-law data, Re = 2.86. Both of
these numbers are of the order we expect for slow, viscous fluid.

The dominant terms (over those that we know) in equation (3.16), which represents
equation (3.14), are those of order R/H since R/H ≫ 1, V/U ≪ 1 and the Reynolds
number is of order 1. In equation (3.1), representing equation (3.15), the term which
dominates is the (R/H)2 term, since (R/H)2 ≫ R/H ≫ 1 and again Re ∼ 1. This
reduces our equations (3.14)–(3.15) to

0 = −∂p
∂r

−
[
1

r2
∂

∂r

(
r2σrr

)
+

1

r sin θ

∂

∂θ
(σrθ sin θ)

]
− ρg cos θ (3.18)

0 = −1

r

∂p

∂θ
− 1

r2
∂

∂r

(
r2σrθ

)
+ ρg cos θ

= −1

r

∂p

∂θ
− ∂σrθ

∂r
− 2

r
σrθ + ρg cos θ, (3.19)

whose terms scale like

0 = (?)− 1

Re

[
R

H
+
R

H

]
+ (?) (3.20)

0 = (?)− 1

Re

[(
R

H

)2

+
R

H

]
+ (?). (3.21)

Our plan for the next stage is to take what remains of the r-momentum equation,
equation (3.18), represented by (3.20), integrate it dr to find an expression for p,
and then differentiate it dθ to substitute into the θ-momentum equation, equation
(3.19), represented by (3.21).

When we integrate equation (3.18) dr, we introduce a scale H into equation (3.20),
and so we find that pressure p scales as Re−1R, plus the gravity term. When we
differentiate this dθ (which offers no scaling) to substitute it into equation (3.19)
(at which point we multiply it by 1/r, introducing a scaling of 1/R), this term, now
of size Re−1, will be dwarfed by the Re−1(R/H)2 term, so we discard this term in
equation (3.18) and so equations (3.18)–(3.19) become

0 = −∂p
∂r

− ρg cos θ (3.22)

0 = −1

r

∂p

∂θ
− ∂σrθ

∂r
+ ρg sin θ. (3.23)
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So, as mentioned already, the approach from here is to integrate equation (3.22) dr
to find an equation for p, then differentiate it dθ and substitute that into equation
(3.23), which we then try to solve.

Integrating equation (3.22) then gives us

p = −ρgr cos θ + pc,

for some constant pc, with the boundary condition at the surface

p = patm + psurf at r = R + h,

where patm is atmospheric pressure and psurf is pressure due to surface tension γs,
given by the Young–Laplace equation

psurf = −γs∇ · n̂

≈ −γs
∂2h

∂s2
,

if the free surface h varies slowly along the coordinate s along the cylinder. Of
course, here s = rθ, and so

= −γs
r2
∂2h

∂θ2

= − γs
(R + h)2

∂2h

∂θ2

on the surface. Hence we are left with an expression for p,

p = patm + ρg(R + h− r) cos θ − γs
(R + h)2

∂2h

∂θ2
. (3.24)

Differentiating this dθ,

∂p

∂θ
= −ρg(R + h− r) sin θ + ρg cos θ

∂h

∂θ
− γs

(R + h)2
∂2h

∂θ2
+

2γs
(R + h)3

∂2h

∂θ2
∂h

∂θ

and substituting this into equation (3.23) gives

∂σrθ
∂r︸︷︷︸
1

= −ρg(R + h− r) sin θ

r︸ ︷︷ ︸
2

+
ρg cos θ

r

∂h

∂θ︸ ︷︷ ︸
3

− γs
r(R + h)2

∂2h

∂θ2︸ ︷︷ ︸
4

+
2γs

r(R + h)3
∂2h

∂θ2
∂h

∂θ︸ ︷︷ ︸
5

− ρg sin θ︸ ︷︷ ︸
6

.

(3.25)
First comparing the terms with ρg in them (since we don’t know size of g), namely
terms 2, 3 and 6, we find they scale as

ρgH

R
,

ρgH

R
, ρg

and so clearly term 6 dominates. Comparing the terms without gravity in them,
terms 1, 4 and 5, we see they scale as

k

H

(
U

H

)n

, −Hγs
R3

,
H2γs
R4

. (3.26)
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Figure 3.2: The velocity profiles we find for the spherical dome, equations (3.34) and
(3.33), are equivalent to that we would find for viscous fluid travelling
down a flat inclined plane, as shown here.

Of the two terms with γs in them, Hγs/R
3 is clearly bigger. For this term to be the

same size as the term on the left-hand side, k/H(U/H)n, this would require

γs ∼
kR3

H2

(
U

H

)n

.

Using the values from Table 1.1, with our Newtonian data, this would require
γs ≈ 480200Nm−1, and with our power-law data, would require γs ≈ 106705Nm−1.
In comparison, Table 1.1 tells us that for chocolate, γs = 0.0226Nm−1, which is
considerably smaller! Clearly, then, term 1 in (3.26) dominates over the surface
tension terms. So equation (3.25) reduces to

∂σrθ
∂r

= −ρg sin θ, (3.27)

i.e. the viscosity term balances with the gravity term.

At this point we see that the curvature of the problem has disappeared—it’s a pure
balance of viscosity and gravity. This problem has reduced to what we find for
a fluid travelling down an flat inclined plane at an angle θ to the horizontal, as
depicted in Figure 3.2. In other words, the fluid does not experience the curvature
of the substrate. Although we have modelled the dome as a hemisphere, we could
choose any smooth shape for the dome and the velocity profiles we will find shortly
would still decribe the flow, given that we know the elevation of the local piece.

This, however, should not be surprising. Our film thickness h changes slowly over
the dome, and is tiny compared to the radius of the dome. Furthermore the kind
of speeds we expect on the dome are not particularly fast. In fact, we can draw
parallels with the shallow water equations from geophysical fluid dynamics, albeit
with some Willy Wonka-type chocolatey ocean.
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We continue with our analysis, however, by recalling that the stress term σrθ is
given by

σrθ = kγ̇n−1γ̇rθ.

In equation (3.13), we found that γ̇ scaled as U/H, so to leading order, we take the
dominant term in equation (3.12) and find

γ̇ =

{
1

2

[
r
∂

∂r

(ur
r

)]2}1/2

=
r√
2

∂

∂r

(uθ
r

)

=
1√
2

(
∂uθ
∂r

− uθ
r

)
.

The first term here is of order U/H, the second is of order U/R, which is significantly
smaller. So, again, to leading order,

γ̇ =
1√
2

∂uθ
∂r

. (3.28)

Meanwhile, γ̇rθ is given in equation (3.5) as

γ̇rθ =

[
r
∂

∂r

(uθ
r

)
+

1

r

∂ur
∂θ

]
,

which scales as U/H+V/R, so the second term is comparatively small (since U ≫ V
and H ≪ R), hence we say

γ̇rθ = r
∂

∂r

(uθ
r

)

=

(
∂uθ
∂r

− uθ
r

)

=
∂uθ
∂r

to leading order, by the same analysis that derived equation (3.28).

So then,

σrθ = kγ̇n−1γ̇rθ

= k

(
1√
2

∂uθ
∂r

)n−1
∂uθ
∂r

= k2
1−n

2

(
∂uθ
∂r

)n

,

hence
∂σrθ
∂r

= kn2
1−n

2

(
∂uθ
∂r

)n−1
∂2uθ
∂r2

.
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So substituting this into equation (3.27), we get

kn2
1−n

2

(
∂uθ
∂r

)n−1
∂2uθ
∂r2

= −ρg sin θ,

or, rewritten,
∂2uθ
∂r2

+
ρg sin θ

kn2
1−n

2

(
∂uθ
∂r

)1−n

= 0. (3.29)

It is this equation that we want to solve for on the dome, with boundary equations

u(R) = 0,
∂u

∂r
(R + h) = 0,

the no-slip condition on the sphere surface and no tangential velocity condition on
the fluid surface respectively. We can introduce a shifted coordinate

Y = r −R

to rewrite equation (3.29) and its boundary conditions as

∂2uθ
∂Y 2

+
ρg sin θ

kn2
1−n

2

(
∂uθ
∂Y

)1−n

= 0. (3.30)

with boundary conditions

u(0) = 0,
∂u

∂Y
(h) = 0. (3.31)

This equation is too complicated to solve for general n, so we look at the two cases
we are interested in.

In the Newtonian case, k = µ and n = 1 so equation (3.30) becomes

∂2uθ
∂Y 2

+
ρg sin θ

µ
= 0. (3.32)

Integrating this with our boundary conditions (3.31) gives

uθ(Y, θ) =
ρg sin θ

2µ
Y (2h− Y ). (3.33)

In the chocolatey power-law case, we introduce values for our variables from
Table 1.1. We round them within experimental error to values which allow an
analytical solution (namely, k = 65, n = 1/3). Doing so, we look to solve

∂2uθ
∂Y 2

+ 465 sin θ

(
∂uθ
∂Y

)2/3

= 0

with the boundary conditions (3.31). Doing so gives

uθ(Y, θ) = 890000(2h− Y )Y
(
2h2 − 2hY + Y 2

)
sin3 θ. (3.34)
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Newtonian Chocolatey power-law

u(Y ) ∝ Y (2h− Y ) Y (2h− Y ) (2h2 − 2hY + Y 2)

Dome

0.2 0.4 0.6 0.8
Y�h

u

0.2 0.4 0.6 0.8
Y�h

u

Pipe

r

u

r

u

u(Y ) ∝ Y 2 − h2 h−3(Y 4 − h4)

Figure 3.3: Top row : velocity profiles for the dome, equations (3.33) and (3.34) having
fixed h and set θ = π/2, i.e. just as as fluid is about to leave the dome.
Bottom row : velocity profiles of half pipe flow, for a pipe of radius h and
radial coordinate Y , equations (2.22) and (2.10) respectively. Note how
similar the Newtonian profiles (left column) and power-law profiles (right
column) are.

Takagi and Huppert (2010) perform this analysis for Newtonian isothermal viscous
flows down a cylinder, and find the same velocity profile as we have here. They
state that flow down a sphere produces the same velocity profile, which we have
shown explicitly.

Having derived these velocity equations, they are, as yet, not in a preferred form
since we don’t have an easy method of measuring our film thickness h at every
point.

If we fix h and θ, we can plot the velocity profiles, as shown in Figure 3.3, where the
velocity profiles for half a pipe flow, from the previous chapter, have been added
for comparison.

We can overcome the difficulty of measuring h to find our velocities (3.33) and (3.34)
by multiplying them by 2πY and then integrating them dY to find the flux, Q. The
flux is an experimentally controllable quantity: we know how much chocolate we
are pouring into the system, and this is something we can match in the Newtonian
and power-law cases to compare the two models.
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Y = h

Y = h/2

Y = h/4

Y = h/8

Y = h
Y = h/2

Y = h/4

Y = h/8

Π

8

Π

4

3Π

8

Π

2

Θ

u

Figure 3.4: Velocities following streamlines at different film thicknesses, as functions
of θ. Newtonian fluid (equation 3.33) in orange, chocolatey power-law
fluid (equation 3.34) in blue. Q = 4.4 × 10−5 as in Figure 3.5, so these
velocities relate to that figure.

Figure 3.5: Flows on the dome in the Newtonian (orange) and power-law (blue) cases
respectively. Equation plotted is r = R + h(θ) for h defined in equations
(3.37) and (3.38). Q = 4.4 × 10−5m3s−1, a typical flux, and the other
values as in Table 1.1. Of course we are only interested in −π/2 ≤ θ ≤
π/2.
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The fluxes, then, are, for the Newtonian case,

Q =

∫ h

0

2πY uθ(Y ) dY =
5πρg

12µ
h4 sin θ, (3.35)

and for the chocolatey power-law case,

Q =

∫ h

0

2πY uθ(Y ) dY = 830000πh6 sin3 θ. (3.36)

If we fix our flux Q, then, we can rearrange these equations to find equations for
the film thickness h(θ): in the Newtonian case,

h(θ) =

(
12µQ

5πρg

)1/4

sin−1/4 θ, (3.37)

and in the chocolatey power-law case,

h(θ) =
Q1/6

11.73
sin−1/2 θ. (3.38)

These equations have been plotted together for fixed Q in Figure 3.5. We can see
that the Newtonian fluid model results in generally thinner films than the chocolatey
power law fluid model.

Figure 3.5 is to scale, which is troubling since we do not expect our film flows to
be so thick. The global thickness of the film is ultimately governed by Q, which
we found by estimating the speed of the flow on the dome. If the no-slip condition
was not being satisfied on the dome in practice, this would result in higher speeds
being observed than our theory predicted, causing us to overestimate Q. This is
one possible explanation for the excessively thick prediction; of course, our data has
come from different sources and so very accurate results are unlikely.

We can also now use these values of h in our equations for uθ, equations (3.33) and
(3.34). These velocities have been plotted as functions of θ in Figure 3.4, at film
thicknesses h, h/2, h/4, h/8. What we can see is that Newtonian fluid (in orange)
is faster at varying film thicknesses throughout the majority of flow, which matches
our observation in the pipe, although close to the surface of the dome, it is slower.

3.2 Non-isothermal Newtonian model

In our experiment, the temperature of the chocolate was measured everywhere to be
40 ± 0.5 ◦C (the precision of the thermometer was nearest-degree). Source Wollny
(2005) suggests that a change of one degree can cause a 5% to 10% change in
viscosity, which is not great in our fountain. However, larger fountains are likely
to experience larger changes in temperature and so for completeness we consider a
Newtonian fluid with temperature-dependent viscosity,

µ = µ
(
T (r, θ)

)
.
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For this section only, we consider working on a cylinder instead of a sphere: the
results we find in the 2D case are analogous to the 3D case, but making this simpli-
fication allows us to proceed through some unpleasant integration without having
to resort to computers. And since we are considering this section for completeness,
not for practical prediction, simplifying the geometry seems reasonable.

The analytical work is the same up to equation (3.32) although we are careful with
the placement† of µ,

∂

∂r

(
µ(T (r, θ))

∂u

∂r

)
= −ρg sin θ, (3.39)

which we solve with the no-slip condition on the surface and vanishing tangential
stress on the free surface. However we first scale r by introducing

y =
r −R

h
, (3.40)

where R is the radius of the cylinder and h = h(θ) is the film thickness, so the fluid
occupies the space 0 ≤ y ≤ 1. This scaling transforms equation (3.39) into

1

h2
∂

∂y

(
µ
∂u

∂y

)
= −ρg sin θ, (3.41)

where the partial derivative ∂/∂y is taken at constant θ, which we want to solve
using the initial conditions

u = 0 on y = 0 (no-slip)

∂u

∂y
= 0 on y = 1 (kinematic).

Doing so gives us the velocity profile

u = h2ρg sin θ

∫ y

0

1− ỹ

µ(T (ỹ, θ))
dỹ. (3.42)

The streamfunction ψ = ψ(y, θ) in polar coordinates satisfies

u = −∂ψ
∂r

= −1

h

∂ψ

∂y

†The Navier–Stokes equation for a general fluid is given in equation (2.11),

ρ
Du

Dt
= −∇p+∇ · σ + F.

For a Newtonian fluid with viscosity µ, the stress tensor σ is given by

σij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)

where ui is the velocity in the ith direction and xj is the jth direction coordinate. When we take
the divergence of σ with a non-constant µ, we cannot bring it outside the divergence operator as
we have done in (3.32) and so our term remains as (3.39).
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Figure 3.6: Left: Integrating dx from 0 to z (thin, blue), and then integrating dz
from 0 to a (thick, red), is equivalent to...
Right: Integrating dz from x to a (thin, blue), and then integrating dx
from 0 to a (thick, red).

and we set ψ = 0 on y = 0 to give

ψy = −h3ρg sin θ
∫ y

0

1− ỹ

µ(T (ỹ, θ))
dỹ (3.43)

=⇒ ψ = −h3ρg sin θ
∫ y

0

∫ ȳ

0

1− ỹ

µ(T (ỹ, θ))
dỹ dȳ

= −h3ρg sin θ
∫ y

0

(1− ỹ)(y − ỹ)

µ(T (ỹ, θ))
dỹ (3.44)

where we’ve used the observation that
∫ y

0

∫ ȳ

0
dỹ dȳ =

∫ y

0

∫ y

ỹ
dȳ dỹ.

[This observation is more obvious if we relabel y → a, ȳ → z, ỹ → x. Then I’m
claiming that ∫ a

0

∫ z

0

dx dz =

∫ a

0

∫ a

x

dz dx.

Figure 3.6 demonstrates the validity of this.]

Hence the volume flux Q = −ψ(1, θ) is given by

Q = h3ρg sin θ

∫ 1

0

(1− ỹ)2

µ(T (ỹ, θ))
dỹ

=
1

3
h3ρg sin θ · f, (3.45)

where f = f(θ) represents the fluidity of the fluid film (note this is slightly different
from the usual definition of fluidity, 1/µ),

f = 3

∫ 1

0

(1− y)2

µ(T (y, θ))
dy. (3.46)
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We can see from this form that, if we note that by definition f ≥ 0 and h ≥ 0,
Q/ sin θ ≥ 0, i.e. Q must have the same sign as sin θ: this is intuitively obvious but
Leslie et al. (2011) continue with this argument to show that flow flux behaves like
this even when the fluid is not symmetric about the sphere.

This also shows that, given a viscosity model µ = µ(T ), since the flux Q is pre-
scribed, (3.45) is the equation which determines the film thickness h.

We introduce the exponential viscosity model for temperature T ,

µ(T ) = exp

(
−λ(T − T0)

µ0

)
(3.47)

which satisfies µ = µ0, dµ/dT = −λ for T = T0. The constant λ > 0 is prescribed
and µ0 is the viscosity of the fluid when T = T0, the uniform temperature of the
dome (in the context of the chocolate fountain, we assume that over time the dome
warms up to the temperature of the chocolate as it leaves the top of the pipe). We
also introduce, as in Leslie et al. (2011), the thermoviscosity number V ,

V =
λ(T0 − Ta)

µ0

, (3.48)

where Ta is the ambient (uniform) temperature of the air outside. Since µ0 and λ are
both positive, we can use the sign of V to tell which way the temperature gradient
goes. High magnitudes of V correspond to fluids whose viscosities depend heavily
on temperature, or are being strongly heated/cooled, or both; and low magnitudes
of V correspond to fluids whose viscosities are less dependent on temperature, or are
being very weakly heated/cooled, or both. For a temperature difference T0 − Ta =
25 ◦C, Balmforth and Craster (2000) give examples of magnitudes: |V | = 1 for wax,
|V | = 5 for basaltic lava and |V | = 7 for syrup.

We will be substituting V into equation (3.47) shortly but first we must find an
equation that governs the temperature T . Temperature following a fluid particle is
governed by the heat equation

DT

Dt
= c∇2T,

where c is thermal diffusivity, and since we’re looking for steady solutions, we look
to solve

u · ∇T = c∇2T. (3.49)

Our boundary conditions are that on the surface of the sphere y = 0, T = T0 and
on the free surface y = 1, we have Newton’s law of cooling:

− k∇T · n̂ = α(T − Ta), (3.50)

where α (≥ 0) represents an empirical surface heat-transfer coefficient, k represents
the fluid’s (constant) thermal conductivity and n̂ is the unit outward normal.
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We now introduce a scaling for T , µ, h and r where hats represent the scaled
variable:

µ = µ0µ̂, T = Ta + (T0 − Ta)T̂ . (3.51)

If we substitute this scaling into (3.47) and then substitute (3.48) into that we get

µ̂(T̂ ) = exp(−V (T̂ − 1)). (3.52)

We can write our governing equation (3.49) in component (r, θ) form,

dr

dt

∂T

∂r
+

dθ

dt

∂T

∂θ
= c

[
1

r

∂T

∂r
+
∂2T

∂r2
+

1

r2
∂2T

∂θ2

]
. (3.53)

For this argument only, we introduce the scalings from the previous section, equation
(3.10),

∂r ∼ H, r ∼ R,

where H is a typical film thickness and R is the radius of the sphere. We also now
scale time,

t ∼ τ,

where τ is a typical time that the chocolate spends on the dome before falling off.
If we now scale equation (3.53) using this scaling as well as that already introduced
in (3.51), we get

1

τ

[
dr̂

dt̂

∂T̂

∂r̂
+

dθ

dt̂

∂T̂

∂θ

]
= c

[
1

H(Hr̂ +R)

∂T̂

∂r̂
+

1

H2

∂2T̂

∂r̂2
+

1

(Hr̂ +R)2
∂2T̂

∂θ2

]
,

which scales as
1

τ
+

1

τ
= c

[
1

HR
+

1

H2
+

1

R2

]
,

where we have divided out the temperature scaling. Rearranging, this is equivalent
to

1 + 1 = Fo

[
H

R
+ 1 +

(
H

R

)2
]
, (3.54)

where Fo = cτ/H2 is the non-dimensional Fourier number, which measures the
ratio of heat conduction rate to the rate of thermal energy storage. Using values
for chocolate from Table 1.1 and estimating τ = 1 s, we find Fo = 0.0632, which
makes the right-hand side of equation (3.53), represented by equation (3.54), com-
paratively small to the left hand side. In this case, it reduces (3.53) to saying what
we already know: the temperature of chocolate does not change while it travels
over the fountain. For material comparison, chocolate’s thermal diffusivity is given
in Table 1.1 as 6.32 × 10−8 m2 s−1. The thermal diffusivity of water at 25 ◦C is
1.43× 10−7 m2 s−1 (Blumm and Lindemann, 2003). If we were using water instead
of chocolate, with the same film thickness, the time scale τ would have to be of the
order of 10 s for the Fourier number to be of order 1.
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Since we have already established that this section deals with a case that we do not
observe on our chocolate fountain, but is nonetheless interesting, we will assume
that the Fourier number is of order 10 or higher, allowing the right-hand side to
dominate and allowing us to continue.

The dominant term from the right-hand-side of equation (3.53) is the second one
(order Fo /H2), so this equation reduces to

∂2T̂

∂r̂2
= 0,

which is equivalent to

∂2T̂

∂y2
= 0,

since r = Hr̂ +R and r = hy +R.

We now drop all hats for convenience. We now have to solve, then,

∂2T

∂y2
= 0, (3.55)

and our boundary conditions become y = 0, T = 1 and on the free surface y = 1,

∂T

∂y
= −αH

k
T

= −BhT (3.56)

where B = α/k is a dimensionalised Biot number (which measures heat transfer
at the free surface). We solve this by integrating (3.55) twice, and applying the
boundary conditions to find

T (y, θ) = 1− Bhy

1 + Bh
. (3.57)

We can now put this form of T into our equation for µ, equation (3.52):

µ(T ) = exp(−V (T − 1))

= exp

(
BhV y

1 + Bh

)

= exp(Vy) (3.58)

where for brevity we have followed the convention of Leslie et al. (2011) and used
the notation

V =
BhV

1 + Bh
. (3.59)

We can now substitute (3.58) into (3.42) to find our velocity profile

u = h2ρg sin θ

∫ y

0

(1− ỹ) exp(−V ỹ) dỹ.

=
h2ρg sin θ

V2

[
V − 1 + exp(−Vy)[V(y − 1) + 1]

]
. (3.60)
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We can also substitute (3.58) into (3.44) to give an expression for the streamfunction

ψ = −h3ρg sin θ
∫ y

0

(1− ỹ)(y − ỹ) exp(−V ỹ) dỹ

=
−h3ρg sin θ

V3

[
V2y − V(y + 1) + 2 + exp(−Vy)[V(1− y)− 2]

]
, (3.61)

and into (3.46) to get the fluidity,

f = 3

∫ 1

0

(1− y)2 exp(−V ỹ) dy

=
3

V3

[
(V − 1)2 + 1− 2 exp(−V)

]
. (3.62)

Having found an expression for the fluidity, we can then work out one for h by
rearranging (3.45) to get

h = 3

√
3Q

fρg sin θ
, (3.63)

although the right-hand side is itself in terms of h, since f = f(V) and

V =
BhV

1 + Bh
.

Analytic solutions exist for the special case of constant viscosity. If there is no heat
transfer to/from the atmosphere at the free surface of the fluid (α = 0, which in
turn means B = 0), or the viscosity does not depend on temperature (λ = 0 and
hence V = 0) then the fluid has constant viscosity µ = 1 and fluidity f = 1. The
latter agrees with asymptotic analysis: observe that (3.62) can be expanded about
V = 0:

f = 1− V
4
+

V2

20
+O(V3) as V → 0.

Of course this then reduces equation (3.63) to the 2D equivalent of (3.37), which has
been plotted in Figure 3.5 (in orange). Leslie et al. (2011) have found and plotted
numerical solutions for B, V 6= 0 (reproduced here in Figure 3.7) and also discuss
the cases of B → ∞, V → 0, V → −∞ for further reading.
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Figure 3.7: Film thickness h against θ for differing values of B and V , computed using
numerical methods. Source: Leslie et al. (2011)
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Chapter 4

The falling sheet

Flows in liquid sheets with two free surfaces are considerably harder to describe
than film flows over solids with only one free surface. The complication lies in three
properties:

1. two free boundaries,

2. the relation between sheet thickness and distance along the sheet is unknown,

3. the position of the sheet’s trajectory in space is also unknown.

Flows in sheets are nearly irrotational or extensional since both boundaries of the
fluid have no shear upon them, and hence velocity and stress in the streamwise
direction does not vary significantly over the sheet cross-section. Viscous effects
in the sheet then mainly come from the normal stress difference. We will look for
steady flows, but more complications in falling sheets come from their naturally
unsteady nature, and how/when they break up.

Furthermore, in our study, the flow is complicated by the shape of the base of the
dome, which curves inwards (see Figure 4.11). We will take a look at the different
phenomena in effect on the falling sheet.

4.1 Inviscid model

Chocolate fountains exhibit behaviour where the falling sheet actually falls in-
wards instead of straight down (see Figure 4.1). Extensive work, starting with
Taylor and Howarth (1959), has been conducted on water bells, such as in Figure
4.2, where a jet of water is impacted onto a flat surface (or two jets impacted into
each other), and the water spreads out in a thin sheet: essentially it is the water-
hitting-a-spoon effect which is undesirable when washing up! Surface tension, as we
shall see shortly, then pulls the sheet back inwards to form a closed water bell. We
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Figure 4.1: In the chocolate fountain we can see clearly that the sheet falls inwards
once it has left the dome.

are interested in the mathematics of how the surface tension pulls the axisymmetric
sheet back in, since this inward-falling effect is observed in our chocolate fountain.

We proceed by constructing a force balance at right-angles to the stream using the
method of Button (2005), hence overcoming the first problem by choosing coordin-
ates which follow the falling sheet’s path.

We start by setting up the geometry of the falling sheet problem with cylindrical
coordinates (r, θ, z). Since the fluid falls from the dome under gravity, we set our z
to be pointing downwards; and we assume the flow to be axisymmetric about the
vertical and so consider a ‘slice’ of the falling sheet in the (r, z) plane, Figure 4.3.
We also define local coordinates along and normal to the sheet, ŝ, n̂ so that u = uŝ.
We define the angle φ to be the small angle between the vertical and the sheet, as
shown in Figure 4.3.

We consider a fluid element of length dx, width dy and thickness h, as in Figure
4.4. This element has two principal radii of curvature: the axisymmetric, RA, and
the meridian, RM , radii, as shown in Figure 4.5. We assume the element is small
enough to approximate the thickness h to be constant within the element. We now
consider the forces acting on this element:

1. The force due to gravity acting on the element is

Fg = ρgh(cosφ ŝ+ sinφ n̂)dxdy.

2. The pressure force caused by the difference between the internal and external
pressures, δp, is

Fp = −δp dx dy n̂.

3. The force due to surface tension is given by

Fs = 2γs dx dy

(
1

RA

+
1

RM

)
n̂.
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Figure 4.2: A water bell in action. Two jets, approximately 3mm in diameter with the
top jet slightly larger, collide and form a thin spreading sheet of water.
Surface tension pulls the sheet inwards until it forms a closed water bell.
Photo by John Huang and John Lienhard; source: Huang and Lienhard
(1966).

Figure 4.3: Setup of the geometry of our problem; adapted from Button (2005).

Figure 4.4: We consider a fluid element of length dx, width dy and thickness h;
adapted from Button (2005).
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Figure 4.5: The fluid element has two principal radii of curvature, RA and RM . The
circle for which RA is the radius is in the plane normal to the page.

This is since if we take the surface tension γs to be constant along the surface,
then immediately the tangential component of the surface force disappears
by symmetry. Noting that there are two surfaces present, the force in the
axisymmetric direction of curvature becomes 2γs dxdy

RA

n̂ and similarly in the

meridian direction the force is 2γs dxdy
RM

n̂. We add these together to give our
result above.

We balance these forces by the centripetal acceleration experienced by the fluid
particle towards the vertical pipe at any point on the meridian section. This accel-
eration is u2

RM

n̂.

Taking the normal components of the forces and acceleration, and dividing through
by xy, Newton’s second law gives us

2γs

(
1

RA

+
1

RM

)
+ ρgh sinφ− δp =

ρhu2

RM

(4.1)

where ρhxy is the mass of the fluid element which appears on the right-hand-side.
We now substitute the geometric identities

RA =
r

cosφ

1

RM

= −dφ

ds

into equation (4.1) and we get

2γs

(
cosφ

r
− dφ

ds

)
+ ρgh sinφ− δp+ ρhu2

dφ

ds
= 0. (4.2)

We now consider a flow rate argument. Looking down the z-axis, cross-sections of
the falling sheets are circles of radius rout and rin. If we say that the position of the
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sheet is r = 1
2
(rout − rin), then the thickness of the sheet is h(z) = rout − rin. If the

flow rate is constant at Q, then by continuity, for all z we have

Q =
[
πr2out(z)− πr2in(z)

]
u(z)

= 2πrh(z)u(z)

=⇒ h(z) =
Q

2πru

Which if we substitute into our value of h in (4.2), we get

2γs

(
cosφ

r
− dφ

ds

)
+
Qρg sinφ

2πru
− δp+

ρQu2

2πru

dφ

ds
= 0. (4.3)

We now non-dimensionalise our variables by scaling in the following way:

ẑ =
z

L
r̂ =

r

L
ŝ =

s

L
û =

u

u0

where u0 is our initial velocity as it leaves the dome and

L =
ρQu0
4πγs

.

Using values from Table 1.1 and the same flux Q as in Figure 3.5, L ≈ 2 cm, which
is roughly how far our fluid falls inwards in experiment, so this is a sensible choice
for us to scale our falling sheet on. This scaling in equation (4.3) gives

cosφ

r̂
− dφ

dŝ
− α + β

sinφ

ûr̂
+
û

r̂

dφ

dŝ
= 0 (4.4)

where

α =
ρQu0δp

8πγ2s
β =

ρgQ

4πγsu0
.

We choose this form of the equation since it is clearer than equation (4.4), and
hence our falling sheet, only depends on the parameters α and β. The parameter α
accounts for the effect of the inside-outside pressure difference δp, and β accounts
for gravity.

We are seeking an equation for r̂ as a function of ẑ, r̂ = r̂(ẑ). We now take all
variables to be dimensionless as we omit the hats for convenience. Equation (4.4)
then becomes

cosφ

r
− dφ

ds

(u
r
− 1

)
− α + β

sinφ

ur
= 0 (4.5)

which, if we then notice that r′(z) = tanφ, this gives us

1

cosφ
=

(
1 + r′2

)1/2 dφ

ds
= r′′ cos3 φ (4.6)

and if we substitute this into equation (4.5) we get the final governing equation for
the shape of the falling sheet:

r′′(u− r) +
(
1 + r′2

)(
1 +

β

u
r′
)
− αr

(
1 + r′2

)3/2
= 0 (4.7)
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with the initial conditions∗

r(0) = R/L, r′(0) = 0 (4.8)

Now we want to work out the speed u as a function of z and to do this we need
to use the inviscid approximation. We assume that the sheet is thin enough that
we can assume to the velocity to be constant through a cross-section at a given
z. Since the surface of the liquid film is itself a streamline, we can use Bernoulli’s
(dimensional) equation for any arbitrary point along a streamline where gravity is
constant:

1

2
u2 − gz +

p

ρ
= const.

The streamline is also a free surface, so the pressure p is constant, and hence p/ρ
is constant. The equation then reduces to

u2 − 2gz = const.

How good this inviscid approximation is, is difficult to determine exactly without
being able to measure the speed of the flow reliably throughout its fall. Brunet et al.
(2004) use a silicon oil with similar densities and surface tension to chocolate (ρ =
970 kgm−3, γs = 0.0204Nm−1) but smaller (but considerably higher than water)
viscosity of 0.2Pa s. They were able to measure the speed of the flow as it falls,
and plotting the squared speed u2 against z, the results were generally along the
line u2 = 2gz. Chocolate, of course, is much more viscous, and we will discuss this
more later.

Since u = u0 at z = 0 when the fluid leaves the dome,

u2 = u20 + 2gz, (4.9)

which if we non-dimensionalise as before, becomes

u2 = 1 + 2βz. (4.10)

We then are left with the complete governing equations (4.7), (4.8) and (4.10) to
solve. Analytically this is only possible where α = β = 0. Although we say later
that α = 0, since we don’t expect any significant pressure difference δp between the
inside and outside of the sheet, we cannot say this for β, since this term represents
gravity terms, and the Froude number (U/

√
gR), which represents the ratio of

inertial to gravitational forces, is order 1. So we will use the scaling arguments
given in Button (2005) and reproduced below.

If we take equation (4.2) and substitute the φ terms for those in equation (4.6)
(which come from Y ′(z) = tanφ), we get

2γs
r(1 + r′2)1/2

− 2γsr
′′

(1 + r′2)3/2
+

ρghr′

(1 + r′2)1/2
− δp+

ρhu2r′′

(1 + r′2)3/2
= 0. (4.11)

∗If we look at Figure 4.1, we can see that the sheet does not fall directly downwards, i.e.
r′(0) < 0. We could of course measure the angle here and work out which value of r′(0) we want
to set as the initial condition, but for sake of argument let’s assume ideally that the sheet leaves
the dome vertically.
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We scale r like R = R/L, the scaled radius of the sphere. Now, in this model, when
the fluid leaves the dome, the fluid falls under gravity, and we will assume the flow is
dominated by gravity rather than surface tension. If the fluid is left to fall without
the presence of either another dome beneath it or the reservoir at the bottom, then
the sheet should fall a long distance Z, where Z > R but Z2 ≫ R2. If we perform
scaling analysis on equation (4.11) in this way and then multiply through by R, we
find that it scales as

2γs(
1 +

(
R
Z

))1/2 − 2γs
(
R
Z

)2
(
1 +

(
R
Z

)2)3/2
+

ρghR
(
R
Z

)
(
1 +

(
R
Z

)2)1/2
− δpR+

ρhu2
(
R
Z

)2
(
1 +

(
R
Z

)2)3/2
∼ 0.

Since (R/Z)2 ≪ 1, this equation, where we have divided through by R, reduces to

2γs
R +

ρghR
Z − δp ∼ 0,

which represents
1

r
+ β

r′

r
− α = 0

from equation (4.11).

We now argue that the pressure difference between the inside and the outside of the
sheet is zero, since the sheet in reality is not continuous enough to form a proper
seal. So α = 0 and hence equation (4.11) reduces to

r′(z) = −u
β
, (4.12)

and substituting in equation (4.10),

r′(z) = −(1 + 2βz)1/2

β
.

Which, when integrated with the boundary condition r(0) = R/L (remember z has
been scaled here), produces an equation for r,

r(z) =
R

L
+

1− (1 + 2βz)3/2

3β2
. (4.13)

This equation (in dimensional form) has been plotted in Figure 4.6, with data
from Table 1.1. We can see that it captures the essence of what we see in the
falling sheet, photographed in Figure 4.1, and shows the sheet falling inwards due
to surface tension with slope of the same order we expect. However, this model
does not match in all the right places. Firstly, it predicts that the sheet falls in
about 3 cm over the 7 cm drop, when we observe in experiment only about half that.
Secondly, we can see in Figure 4.1 that the falling sheet does not start by falling
directly down—it falls from the beginning at a slant, and we have lost the ability
to set r′(0) in doing this scaling analysis which reduces the order of the governing
equation. We will shortly go on to explain the other effects at work here.
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Figure 4.6: Plot of the dimensionalised form of equation (4.13) with values from Table
1.1. We can see that this produces a shape which captures of the essence
of what we see, but falls too far inwards.

4.1.1 Validity of inviscid approximation

Viscous effects are expected to play a part here, as shown by the following calcu-
lation. We will compare the energy used in the work done by viscous forces in the
falling fluid, K, with the total energy coming in from the previous stage, E, and
show that viscous effects should be apparent in our analysis of the falling sheet.

Cauchy’s energy equation for energy K in a viscous Newtonian fluid of volume V
and viscosity µ is, generally,

dK

dt
= −

∫

V

2µγ̇ij γ̇ij dV (4.14)

where γ̇ij is the ijth component of our rate of strain tensor γ̇. But

γ̇ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(4.15)

in coordinates (x1, x2, x3) with respective velocities (u1, u2, u3).

We have worked out from our geometry in equation (4.9) that, in dimensionalised
form,

u2 = u20 + 2gz

in m s−1. Hence
du

dz
=

g

(u20 + 2gz)1/2
(4.16)
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in s−1. Now the velocity is predominantly vertical, and so we say that the dominant
rate of strain tensor is γ̇33, if we briefly use Cartesian coordinates (x, y, z) with an
inverted z component. Hence, plugging equation (4.16) into equation (4.15) we get

γ̇33 =
g

(u20 + 2gz)1/2

in s−1. Now the fluid is incompressible (∇·u = 0) and so γ̇ is traceless (
∑

i γ̇ii = 0).
Hence at best, γ̇11 = γ̇22 = −1

2
γ̇33 or at worst, γ̇11 = −γ̇33 and γ̇22 = 0. Taking the

best-case scenario and substituting into equation (4.14) we get

dK

dt
= −

∫

V

3µ
g2

u20 + 2gz
dV

= −3µg2
∫

V

1

u20 + 2gz
dz · xy

= −3

2
µg

[
log(2gz + u20)

]ℓ
0
· xy

= −3

2
µg log

(
2gℓ

u20
+ 1

)
· xy (4.17)

in J s−1, where xy is
∫
dx dy and ℓ is the height of the drop.

Compare this to the kinetic energy EK entering the system

EK =
1

2
ρ

∫

V

u2 dV

=
1

2
ρ

∫ ℓ

0

(
u20 + 2gz

)
dz · xy

=
1

2
ρ
(
u20ℓ+ gℓ2

)
· xy

in Joules, and the potential energy difference EP of the system at the top and
bottom

EP =

∫ ℓ

0

ρgz dz · xy

= ρg
ℓ2

2
· xy

also in Joules.

Substituting our values from Table 1.1 into these equations, we find that in a fifth
of a second, an estimate for how long it takes chocolate to complete its fall, the
energy absorbed by viscous forces K is equal to 208xy J. The combined kinetic and
potential energy entering the sheet from the dome is E = EK + EP = 101xy J. So
we see that the viscous forces are expected to contribute highly.
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Figure 4.7: Plot of dimensionalised velocity of the sheet as a function of z in the invis-
cid (blue, equation 4.10) and viscous (pink, equation 4.18, µ = 10Pa s)
cases.

4.2 Viscous model

Gilio et al. (2005) examine 2D falling nonsteady liquid sheets, deriving governing
equations through a different (and newer, but less intuitive) method, and discusses
viscous effects at the end. The viscous equations are solved numerically using finite-
difference methods, and the results are interesting and relevant to our falling sheet
of chocolate.

Figure 4.7 plots the velocity of the sheet as a function of z in the inviscid and
viscous cases. The inviscid plot is equation (4.10), derived by us. Gilio et al. (2005)
give results for both their inviscid and viscous (where they have used a fluid with
viscosity 10Pa s, close to our chocolate value of 14Pa s) cases, and we have matched
our inviscid graph with theirs to find the equation governing the viscous velocity,
which is remarkably linear and is given in non-dimensional form by

u(z) = 1 + 2.12z. (4.18)

We can substitute this velocity into equation (4.12) to find an equation governing
the position of the viscous sheet in time, namely

r(z) =
R

L
− z + 1.06z2

β
, (4.19)

recalling that these equations are still nondimensional. This has been plotted (in
dimensional form) in Figure 4.8, alongside the inviscid case for comparison. What
we see in this plot is that the viscous sheet does not fall as far inwards as in the
inviscid prediction, instead only falling about 1.5 cm inwards over the 7 cm drop:
this very closely matches what we observe in running the chocolate fountain.

Figure 4.9 shows the profile of the falling sheets in the inviscid and viscous cases for
artificially lower and higher surface tensions than that given (and used in Figure
4.8) for chocolate. Predictably, higher surface tensions bring the sheet in further.
Interestingly, it affects the viscous sheet more than the inviscid sheet, with the
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Figure 4.8: Profile of the falling sheet from the equations derived in the inviscid (blue,
equation 4.13) and viscous (pink, equation 4.19, µ = 10Pa s) cases. The
inviscid case is the same as Figure 4.6, and the viscous case has been
matched from the results in Gilio et al. (2005).

viscous sheet falling further inwards in the higher surface tension case than the
inviscid prediction.

4.3 The teapot effect

The so-called ‘teapot effect’ was first written about in Reiner (1956), where the
term was coined. The effect is an everyday occurrence and is shown in Figure
4.10: when pouring tea from a teapot at fairly slow speeds, the tea has a tendency
to curve backwards and dribble down the spout instead of falling nicely into the
cup. The relevance to our chocolate fountain problem is that, as shown in Figure
4.11, the dome from which the chocolate falls is curved at the edge, which is a
property of badly-formed teapots. Of course, in teapots, this falling backwards is
not a phenomenon that we want, although in a chocolate fountain, we do want
this because it produces the aesthetic of the inward-falling sheet. Considerable
work has been done on the teapot effect, summarised nicely in the introduction of
Kistler and Scriven (1994), and here we discuss just a few of the explanations.

The analogy is not full, though, since we have no spout and the dome is hollow. The
teapot effect is not 3D and axisymmetric, however, Kistler (1983) derives governing
equations for an axisymmetric viscous falling sheet in the same manner as the 2D
‘teapot’ case. The physics responsible for the teapot effect is however relevant to
both the teapot and our fountain, so we shall entertain the teapot effect for a few
paragraphs.
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Figure 4.9: Profile of the falling sheets in the inviscid (blue) and viscous (pink)
cases, with different surface tensions. Left: γs = 0.01Nm−1. Right:
γs = 0.05Nm−1. The surface tension of chocolate, used in Figure 4.8 is
0.0226Nm−1.

Figure 4.10: The teapot effect in action. Tea is poured from the spout at decreasing
velocities in images 1–5, and the tea deflects backwards towards the
spout. Flow is increased again in image 6, and we can see an even
stronger effect. Source: Kistler and Scriven (1994).
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Figure 4.11: Relevance of the teapot effect to our chocolate fountain. The edge of
the dome, from which the chocolate falls, is curved, emphasised by the
arrow.

Figure 4.12: What we see when we pour liquid down a slope is that the liquid creeps
upwards instead of falling entirely downwards. This contributes to an
inwards-falling sheet. Adapted from Kistler and Scriven (1994).
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Figure 4.13: Reiner’s first hypothesis for the teapot effect. ‘Vortices’ are created along
the fluid path due to the velocity profile, which pushes the fluid towards
the underside of the body it is flowing around. Adapted from Reiner
(1956).

Figure 4.12 shows diagrammatically what we see when we pour liquid down a slope
before it falls off: the fluid creeps upwards before falling down. Surface tension is
responsible, as we saw in Section 4.1, for the sheet falling inwards. However, it is
not, as Reiner writes, surface tension which is responsible for this creep effect.

Reiner makes two observations about the fluid continuing to move backwards, the
first of which he offers an explanation for, which we will mention. Figure 4.13 shows
this: that ‘vortices’ are created along the fluid path due to the velocity profile, which
pushes the fluid towards the underside of the body as it flows around.

Keller (1957) gives a different explanation, quoted here:

Qualitatively the explanation is this. When the liquid flows around the
lip its velocity is greatest at the lip. By Bernoulli’s principle the pressure
is then lowest there. Consequently the surrounding air or other fluid
pushes the liquid against the lip by virtue of its atmospheric pressure.
This enables the flow to turn the corner. Once the flow has turned the
corner it continues along the underside of the spout rather than falling
because the surrounding air supports it. This upside-down flow, although
unstable, will travel quite far down the spout before its instability results
in detachment, if the liquid layer is thin. When detachment occurs the
jet will fall backwards since its velocity is directed away from the lip.

This explanation is supported with mathematical work considering 2D flow of in-
viscid, incompressible fluid leaving a horizontal spout. Once again, we see that the
viscosity of the fluid is not a cause of deflection in the flow.
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Figure 4.14: Applying a super-hydrophobic coating to the spout reduces the teapot
effect in experiment. Source: Duez et al. (2009).

Duez et al. (2009) argue that surface wettability is an important factor, follow-
ing experiment. They argue that coating the spout of the teapot with a super-
hydrophobic surface avoids the teapot effect altogether, as shown in Figure 4.14.
Of course, in the chocolate fountain, this could be useful information: to maximise
the teapot effect to produce inwards-falling sheets, one should wet the undersides
of the domes first. This conclusion seems to contradict that of Reiner, who says
that coating the spout with some water-repelling material didn’t make any differ-
ence, hence suggesting that surface tension plays very little part in the dynamics
of the fluid. It cannot be argued that such super-hydrophobic materials as used by
Duez et al. were not invented: in Figure 4.14 they have coated the teapots with
black soot, which would have been more prevalent in the time of Reiner.

Ultimately the teapot effect is a complicated phenomenon which is, due to time,
beyond the scope of this project to investigate fully. I have only briefly discussed
the physics behind various studies but more rigorous and full analysis could be a
project of its own, particularly since it involves considerable numerical work.

4.4 Concluding remarks on the falling sheet

The falling sheet is a difficult problem because there are a number of different
phenomena acting together. The teapot effect showcases some of these quite nicely.
We were able to solve for an inviscid falling sheet by simplifying the problem, but
viscous falling sheets require numerical work which, due to time constraints, we
have not been able to undertake. Relevant published papers that have performed
this work have been mentioned.
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