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All questions may be attempted but only marks obtained on the best four solutions will
count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Define cosh(x) and sinh(x) in terms of exponentials.

(b) Use the definition of sinh(x) to show that

sinh−1(x) = ln
(
x+
√

1 + x2
)
.

(c) Hence find expressions for the first and second derivatives of sinh−1(x).

(d) The curve y(x) is defined by

sinh[y(x)] = x2 − 1.

Find:

(i) the values of x where y(x) cuts the x-axis,

(ii) the values of x at any stationary points of y(x),

(iii) the nature of these stationary points (i.e. are they minima, maxima, etc.?).
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2. (a) (i) Find (or state) the first three terms of the Maclaurin series for the functions
ex and sinx.

(ii) Hence find the first three terms of the Maclaurin expansion of esinx.

(iii) Hence show that ∫ 1

0

esinx dx ≈ 5

3
.

(The actual answer can be worked out numerically as 1.63187 . . ..)

(b) The Euler–Tricomi equation is a partial differential equation which is useful in
the study of extremely fast air flows (in the range 600–768 mph), given by

∂2u

∂x2
− x∂

2u

∂y2
= 0.

Which of these functions u(x, y) below satisfy the Euler–Tricomi equation?

(i) u(x, y) = 2(3y2 + x3)− (y3 + x3y)

(ii) u(x, y) = x cos y + 1

3. (a) Evaluate the integrals:

(i)

∫ 1

0

√
x+ 2

2
dx,

(ii)

∫
ln(lnx)

lnx

x
dx,

(iii)

∫ 0

−π/2
sin3 x cos3 x dx.

(b) Show that ∫ π

−π
ex sin(3x) dx =

3

5
sinh(π).
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4. (a) Let z =
√

2− 2i and w = −
√

3− i. Write down:

(i) Re(iw),

(ii) z/w,

(iii) |zw|,
(iv) arg(w),

writing your answers in the form x+ iy where appropriate.

(b) (i) Find all solutions to z4 = 1 + i in the form r(cos θ+ i sin θ) where r, θ ∈ R
and r > 0.

(ii) Plot these solutions on an Argand diagram.

(c) State DeMoivre’s theorem and use it to express cos 6θ as a polynomial in cos θ.

5. Solve the following ordinary differential equations:

(a)
dy

dx
= 2x(y2 + 1), y(0) = 1,

(b) x
dy

dx
+ y = x sinx,

(c) x2
d2y

dx2
+ 4x

dy

dx
+ 2y =

3

x2
.

6. (a) State, without proof, the general formula for a Fourier series on (−π, π) for a
function f(x), giving the expressions for the coefficients.

(b) Find the Fourier series for

f(x) =

{
0 if − π < x 6 0
−2πx if 0 < x < π

,

where f(x+ 2π) = f(x).

(c) Using part (b), or otherwise, show that

π2

8
= 1 +

1

32
+

1

52
+

1

72
+ · · · .
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