UNIVERSITY COLLEGE LONDON

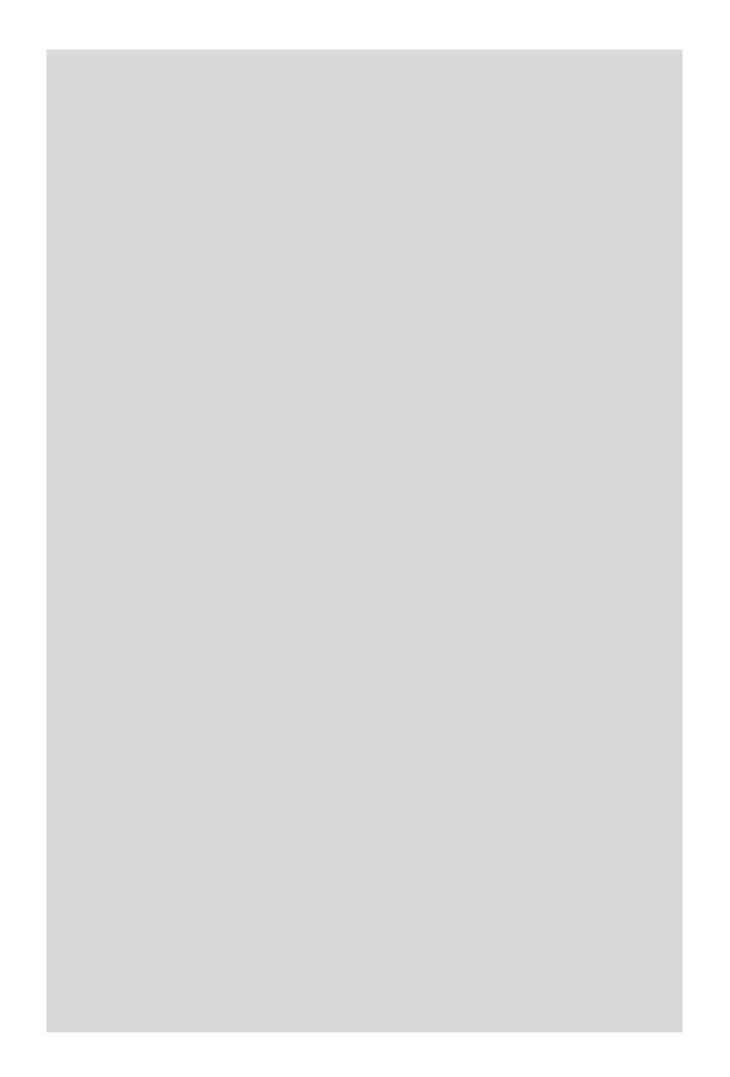
EXAMINATION FOR INTERNAL STUDENTS

MODULE CODE	: MATH1403
ASSESSMENT PATTERN	: MATH1403A
MODULE NAME	: Mathematical Methods for Arts and Sciences
DATE	: N/A (Practice Paper A)
TIME	: N/A
TIME ALLOWED	: 2 Hours 0 Minutes

2012/13-MATH1403-001-EXAM-PPA

©2012 University College London

TURN OVER



All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. (a) Define $\cosh(x)$ and $\sinh(x)$ in terms of exponentials.
 - (b) Use the definition of $\sinh(x)$ to show that

$$\sinh^{-1}(x) = \ln\left(x + \sqrt{1 + x^2}\right).$$

- (c) Hence find expressions for the first and second derivatives of $\sinh^{-1}(x)$.
- (d) The curve y(x) is defined by

$$\sinh[y(x)] = x^2 - 1.$$

Find:

- (i) the values of x where y(x) cuts the x-axis,
- (ii) the values of x at any stationary points of y(x),
- (iii) the nature of these stationary points (i.e. are they minima, maxima, etc.?).

MATH1403

PLEASE TURN OVER

- 2. (a) (i) Find (or state) the first three terms of the Maclaurin series for the functions e^x and $\sin x$.
 - (ii) Hence find the first three terms of the Maclaurin expansion of $e^{\sin x}$.
 - (iii) Hence show that

$$\int_0^1 e^{\sin x} \,\mathrm{d}x \approx \frac{5}{3}.$$

(The actual answer can be worked out numerically as 1.63187...)

(b) The *Euler-Tricomi equation* is a partial differential equation which is useful in the study of extremely fast air flows (in the range 600–768 mph), given by

$$\frac{\partial^2 u}{\partial x^2} - x \frac{\partial^2 u}{\partial y^2} = 0.$$

Which of these functions u(x, y) below satisfy the Euler-Tricomi equation?

(i)
$$u(x,y) = 2(3y^2 + x^3) - (y^3 + x^3y)$$

- (ii) $u(x,y) = x \cos y + 1$
- 3. (a) Evaluate the integrals:

(i)
$$\int_0^1 \sqrt{\frac{x+2}{2}} \, \mathrm{d}x,$$

(ii)
$$\int \ln(\ln x) \frac{\ln x}{x} \, \mathrm{d}x,$$

(iii)
$$\int_{-\pi/2}^0 \sin^3 x \cos^3 x \, \mathrm{d}x.$$

(b) Show that

$$\int_{-\pi}^{\pi} e^x \sin(3x) \, \mathrm{d}x = \frac{3}{5} \sinh(\pi).$$

MATH1403

CONTINUED

- 4. (a) Let $z = \sqrt{2} 2i$ and $w = -\sqrt{3} i$. Write down:
 - (i) $\operatorname{Re}(iw)$,
 - (ii) z/w,
 - (iii) $|\overline{zw}|$,
 - (iv) $\arg(w)$,

writing your answers in the form x + iy where appropriate.

- (b) (i) Find all solutions to $z^4 = 1 + i$ in the form $r(\cos \theta + i \sin \theta)$ where $r, \theta \in \mathbb{R}$ and r > 0.
 - (ii) Plot these solutions on an Argand diagram.
- (c) State DeMoivre's theorem and use it to express $\cos 6\theta$ as a polynomial in $\cos \theta$.
- 5. Solve the following ordinary differential equations:

(a)
$$\frac{dy}{dx} = 2x(y^2 + 1), \quad y(0) = 1,$$

(b) $x\frac{dy}{dx} + y = x \sin x,$
(c) $x^2\frac{d^2y}{dx^2} + 4x\frac{dy}{dx} + 2y = \frac{3}{x^2}.$

- 6. (a) State, without proof, the general formula for a Fourier series on $(-\pi, \pi)$ for a function f(x), giving the expressions for the coefficients.
 - (b) Find the Fourier series for

$$f(x) = \begin{cases} 0 & \text{if } -\pi < x \le 0 \\ -2\pi x & \text{if } 0 < x < \pi \end{cases},$$

where $f(x+2\pi) = f(x)$.

(c) Using part (b), or otherwise, show that

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$

END OF PAPER

MATH1403