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All questions may be attempted but only marks obtained on the best four solutions will
count.
The use of an electronic calculator is not permitted in this examination.

1. (a) (i) By writing tan x =
sinx

cosx
, show that

d

dx
[tanx] = sec2 x.

(ii) Use this in showing that

d

dx

[
1

a
arctan

(x
a

)]
=

1

a2 + x2
.

(b) The curve y(x) is defined on [−π, π] by

y(x) =
1

2

[
2 cos4 x+ sin2 x− 1

]
.

Find:

(i) the values of x where y(x) cuts the x-axis,

(ii) the values of x at any stationary points of y(x),

(iii) the nature of these stationary points (i.e. are they minima, maxima, etc.?).
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2. (a) Find (or state) the first three non-zero terms of the Maclaurin series for the

function f(x) =
1

x− 1
(where |x| < 1).

(b) Find the first four terms of a Taylor series solution to the differential equation

d2y

dx2
= x2 + y3

(
dy

dx

)2

,

where y(1) = 1 and y′(1) = 1.

(c) Find the equation of the plane tangent to the curve

z(x, y) =
cos(3x− y)

2y
,

at the point
(π

3
,
π

2
, 0
)

.

3. (a) Evaluate the integrals:

(i)

∫ (x
5
− π

)1/3
dx,

(ii)

∫
x sec2 x dx,

(iii)

∫ ∞
0

ex

(1 + ex)2
dx.

(b) Show that ∫ 1/2

−1/2

x4 + 1

x3 − 1
dx = −1

3
ln(21).

Hint: recall that x3 − 1 = (x− 1)(x2 + x+ 1).
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4. (a) (i) For a complex number z, define its complex conjugate, modulus, argument
and principal argument.

(ii) Define the complex logarithm ln(z) and the principal-valued complex loga-
rithm Ln(z) in terms of the modulus, argument and/or principal argument
of z.

(iii) Find all solutions to the equation e2z = 1− i.
(b) Let z = cos θ + i sin θ.

(i) State De Moivre’s theorem.

(ii) Show that z + z−1 = 2 cos θ and z − z−1 = 2i sin θ.

(iii) Use this to show that

sin3 θ cos3 θ =
1

32
[3 sin(2θ)− sin(6θ)] .

(iv) Hence, or otherwise, show that∫ π/2

0

cos3 x sin3 x dx =
1

12
.

5. (a) Find the solution to the first order ordinary differential equation

dy

dx
+ y = e−x.

(b) By choosing a suitable substitution, show that the solution to

2xy
dy

dx
− y2 + x2 = 0, y(1) = 0

can be written as (
x− 1

2

)2

+ y2 =

(
1

2

)2

,

(i.e. a circle of radius 1
2

centred at (1
2
, 0).)

(c) Solve the second order ordinary differential equation,

d2y

dx2
+ 3

dy

dx
+ 2y = 10 sinh x.
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6. (a) State, without proof, the general formula for a Fourier series on (−π, π) for a
function f(x), giving the expressions for the coefficients.

(b) Find the Fourier series for

f(x) = x(π − x), −π < x < π,

where f(x+ 2π) = f(x).

(c) Hence, or otherwise, find the Fourier series of g(x) = x(π − 2x) on (−π, π).
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