UNIVERSITY COLLEGE LONDON

EXAMINATION FOR INTERNAL STUDENTS

- MODULE CODE : MATH1403
- ASSESSMENT : MATH1403A PATTERN
- MODULE NAME : Mathematical Methods for Arts and Sciences
- DATE : 23-May-13
- TIME : **10:00**
- TIME ALLOWED : 2 Hours 0 Minutes

2012/13-MATH1403A-001-EXAM-29

©2012 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. (a) Find $\frac{\mathrm{d}}{\mathrm{d}x}[2^x]$.

(b) (i) Define
$$\cosh(x)$$
 and $\sinh(x)$ in terms of exponentials.

- (ii) Use these definitions of $\cosh(x)$ and $\sinh(x)$ to:
 - (A) find their derivatives,
 - (B) obtain the formula $\cosh^2 x \sinh^2 x = 1$.
- (iii) The curve y(x) is defined by

$$y(x) = \sinh^2 x - \cosh x - 1.$$

Find:

- (A) the two real values of x where y(x) cuts the x-axis,
- (B) the values of x at any stationary points of y(x),
- (C) the nature of these stationary points (i.e. are they minima, maxima, etc.?).

MATH1403

2. (a) By writing $\sec x = \frac{1}{\cos x}$, show that

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[\sec x\right] = \sec x \tan x.$$

(b) (i) Find the first two non-zero terms in the Maclaurin series of

$$f(x) = \ln(\cos x).$$

(ii) Hence, or otherwise, given that
$$\cos^2\left(\frac{x}{2}\right) = \frac{1+\cos x}{2}$$
, show that $\ln(1+\cos x) = \ln 2 - \frac{x^2}{4} - \frac{x^4}{96} + \cdots$.

(c) The *heat equation* is a partial differential equation which describes the distribution of heat in a given region over time, given by

$$\frac{\partial u}{\partial t} - \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 0.$$

If $\alpha = 1$, determine whether the following functions u(x, y, t) satisfy the heat equation:

- (i) $u(x, y, t) = t \cos(x) \sin(y)$,
- (ii) $u(x, y, t) = e^{-t}(\cos(y) + \sin(x)).$
- 3. (a) Evaluate the integrals:

(i)
$$\int \left(2x + \frac{1}{2}\right)^{3/2} dx$$
,
(ii) $\int_{1}^{3} \frac{x^{3} + 2}{x(x+1)} dx$.

(b) Show that

$$\int_{1/2}^{1} \frac{1}{x(5x^2 - 4x + 1)^{1/2}} \, \mathrm{d}x = \sinh^{-1} 1.$$

Hint: use x = 1/u.

MATH1403

CONTINUED

- 4. (a) Let z = 3 + 2i and w = -1 i. Write down:
 - (i) $\operatorname{Im}(w)$,
 - (ii) zw,
 - (iii) z/\overline{w} ,
 - (iv) $\arg(w)$,

where your answers for (ii) and (iii) are in the form x + iy.

- (b) (i) Find all solutions to $z^5 = -32$ in the form $r(\cos \theta + i \sin \theta)$ where $r, \theta \in \mathbb{R}$ and r > 0.
 - (ii) Plot these solutions on an Argand diagram.
- (c) Let $z = \cos \theta + i \sin \theta$.
 - (i) Show that $z + z^{-1} = 2\cos\theta$ and $z z^{-1} = 2i\sin\theta$.
 - (ii) Show by expanding $(z z^{-1})^5$ that

$$\sin^5 \theta = \frac{1}{16} \left[\sin(5\theta) - 5\sin(3\theta) + 10\sin(\theta) \right].$$

5. Solve the following ordinary differential equations:

(a)
$$\frac{dy}{dx} = \frac{\tan y}{x}$$
,
(b) $x\frac{dy}{dx} - 2y = x^3 \ln x$, $y(1) = -1$,
(c) $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \cosh x + 3x + 2$.

- 6. (a) State, without proof, the general formula for a Fourier series on $(-\pi, \pi)$ for a function f(x), giving the expressions for the coefficients.
 - (b) Find the Fourier series for

$$f(x) = \begin{cases} 0 & \text{if } -\pi < x \leqslant -\frac{\pi}{2} \\ 1 & \text{if } -\frac{\pi}{2} < x \leqslant \frac{\pi}{2} \\ 0 & \text{if } \frac{\pi}{2} < x < \pi \end{cases},$$

where $f(x + 2\pi) = f(x)$.

(c) Using part (b), or otherwise, show that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

MATH1403

END OF PAPER