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All questions may be attempted but only marks obtained on the best four solutions will
count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Find
d

dx
[2x].

(b) (i) Define cosh(x) and sinh(x) in terms of exponentials.

(ii) Use these definitions of cosh(x) and sinh(x) to:

(A) find their derivatives,

(B) obtain the formula cosh2 x− sinh2 x = 1.

(iii) The curve y(x) is defined by

y(x) = sinh2 x− coshx− 1.

Find:

(A) the two real values of x where y(x) cuts the x-axis,

(B) the values of x at any stationary points of y(x),

(C) the nature of these stationary points (i.e. are they minima, maxima,
etc.?).
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2. (a) By writing secx =
1

cosx
, show that

d

dx
[secx] = secx tanx.

(b) (i) Find the first two non-zero terms in the Maclaurin series of

f(x) = ln(cos x).

(ii) Hence, or otherwise, given that cos2
(x

2

)
=

1 + cos x

2
, show that

ln(1 + cos x) = ln 2− x2

4
− x4

96
+ · · · .

(c) The heat equation is a partial differential equation which describes the distri-
bution of heat in a given region over time, given by

∂u

∂t
− α

(
∂2u

∂x2
+
∂2u

∂y2

)
= 0.

If α = 1, determine whether the following functions u(x, y, t) satisfy the heat
equation:

(i) u(x, y, t) = t cos(x) sin(y),

(ii) u(x, y, t) = e−t(cos(y) + sin(x)).

3. (a) Evaluate the integrals:

(i)

∫ (
2x+

1

2

)3/2

dx,

(ii)

∫ 3

1

x3 + 2

x(x+ 1)
dx.

(b) Show that ∫ 1

1/2

1

x(5x2 − 4x+ 1)1/2
dx = sinh−1 1.

Hint: use x = 1/u.
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4. (a) Let z = 3 + 2i and w = −1− i. Write down:

(i) Im(w),

(ii) zw,

(iii) z/w,

(iv) arg(w),

where your answers for (ii) and (iii) are in the form x+ iy.

(b) (i) Find all solutions to z5 = −32 in the form r(cos θ + i sin θ) where r, θ ∈ R
and r > 0.

(ii) Plot these solutions on an Argand diagram.

(c) Let z = cos θ + i sin θ.

(i) Show that z + z−1 = 2 cos θ and z − z−1 = 2i sin θ.

(ii) Show by expanding (z − z−1)5 that

sin5 θ =
1

16
[sin(5θ)− 5 sin(3θ) + 10 sin(θ)] .

5. Solve the following ordinary differential equations:

(a)
dy

dx
=

tan y

x
,

(b) x
dy

dx
− 2y = x3 lnx, y(1) = −1,

(c)
d2y

dx2
− 3

dy

dx
+ 2y = coshx+ 3x+ 2.

6. (a) State, without proof, the general formula for a Fourier series on (−π, π) for a
function f(x), giving the expressions for the coefficients.

(b) Find the Fourier series for

f(x) =


0 if − π < x 6 −π

2

1 if − π
2
< x 6 π

2

0 if π
2
< x < π

,

where f(x+ 2π) = f(x).

(c) Using part (b), or otherwise, show that

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · .
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